

Section 2: Integration by substitution

Crucial points

1. Remember to substitute for dx in the integral when integrating by substitution

Example Find $\int x(2x-1)^4 dx$

 \Rightarrow

$$\begin{array}{l} \bigstar \quad \underline{Wrong} \qquad \text{Let } u = 2x - 1 \Longrightarrow x = \frac{1}{2}(u + 1) \\ \Rightarrow \qquad \int x(2x - 1)^4 = \int \frac{u + 1}{2} \times u^4 \\ = \frac{1}{2} \int u^5 + u^4 \\ = \frac{1}{12} u^6 + \frac{1}{10} u^5 + c \end{array}$$

✓ <u>Right</u>

Let
$$u = 2x - 1 \Longrightarrow x = \frac{1}{2}(u+1)$$

also $\frac{du}{dx} = 2 \Longrightarrow dx = \frac{1}{2}du$
 $\int x(2x-1)^4 dx = \int \frac{u+1}{2}u^4 \times \frac{1}{2}du$
 $= \frac{1}{4}\int (u^5 + u^4)du$
 $= \frac{1}{24}u^6 + \frac{1}{20}u^5 + c$

2. Remember to change the limits of a definite integral when making a substitution

When you change the variable in an integration (from x to u say) by making a substitution, you must change the limits of the integration from values of x to the equivalent values of u.

3. Don't mix up the derivatives and integrals of $\sin x$ and $\cos x$. The derivative of $\sin x$ is $\cos x$, the integral is $-\cos x$

Example		Find	$\int \sin x \mathrm{d}x$
×	<u>Wro</u>	ng	$\int \sin x \mathrm{d}x = \cos x + c$
\checkmark	<u>Righ</u>	<u>nt</u>	$\int \sin x \mathrm{d}x = -\cos x + c$

Edexcel A level Maths Integration 2 Crucial points

4. Be careful with signs when substituting values into definite integrals

Exam	ple Evalu	$Jate \int_0^{\pi/3} \sin x dx$
×	<u>Wrong</u>	$\int_0^{\pi/3} \sin x dx = \left[-\cos x \right]_0^{\pi/3} = -\cos \frac{\pi}{3} + \cos 0 = -\frac{1}{2}$
\checkmark	<u>Right</u>	$\int_0^{\pi/3} \sin x dx = \left[-\cos x\right]_0^{\pi/3} = -\cos \frac{\pi}{3} + \cos 0 = -\frac{1}{2} + 1 = \frac{1}{2}$

5. Make sure that you never integrate across an asymptote when evaluating an integral.

Example Find
$$\int_{1}^{3} \frac{1}{(x-2)^{2}} dx$$

Wrong $\int_{1}^{3} \frac{1}{(x-2)^{2}} dx = [-(x-2)^{-1}]_{1}^{3}$
 $= -1-1$
 $= -2$
The integral is not defined, as it represents an area
between $x = 1$ and $x = 3$; but the integrand is not
defined when $x = 2$.