

## Section 1: The shape of curves

## **Section test**

1. The diagram below shows part of the graph of y = f(x)



For the interval shown on the graph, which of the following statements is true?

- (a) f'(x) < 0 and f''(x) > 0 (b) f'(x) < 0 and f''(x) < 0
- (c) f'(x) > 0 and f''(x) > 0 (d) f'(x) > 0 and f''(x) < 0
- 2. For the curve  $y = x^3 2x^2 3x + 1$ , at which of the following points is the curve convex? (a) x = 0 (b) x = 1
- (c) x = -1 (d) x = 2
- 3. Find the values of x for which the curve  $y = 2x^3 3x^2 + 4x 1$  is concave.
- 4. Which of the following statements are true?
  - (a) Where  $\frac{d^2 y}{dx^2} > 0$ , the gradient of the curve is positive and getting more positive (b) Where  $\frac{d^2 y}{dx^2} > 0$ , the curve is concave (c) Where  $\frac{d^2 y}{dx^2} > 0$ , the tangent to the curve lies below the curve
- 5. The point A on the graph of y = f(x) has *x*-coordinate *a*.
  - If, when x = a,  $\frac{dy}{dx} < 0$  and  $\frac{d^2y}{dx^2} = 0$ , which of these statements could be true?
  - (a) The point A is a local maximum
  - (b) The point A is a local minimum
  - (c) The point A is a stationary point of inflection
  - (d) The point A is a non-stationary point of inflection
  - (e) The point A is a stationary point but could be a local maximum, a local minimum or a stationary point of inflection



## **Edexcel A level Maths Diff 1 section test solns**

- 6. Which of the following are points of inflection for the curve  $y = x^5 5x^4 + 15x + 4$ ?
  - (a) x = 0
  - (b) x = 1
  - (c) x = 3
  - (d) x = -3
- 7. Find the coordinates of the point of inflection for the curve  $y = -x^3 + 3x^2 1$ .
- 8. The curve  $y = x^3 + px^2 + qx 4$  has a stationary point of inflection at x = 2. Find the values of p and q.
- 9. The point A on the graph of y = f(x) has *x*-coordinate *a*.

If, when x = a,  $\frac{dy}{dx} = 0$  and  $\frac{d^2y}{dx^2} = 0$ , which of these statements is true?

- (a) The point A is a local maximum
- (b) The point A is a local minimum
- (c) The point A is a stationary point of inflection
- (d) The point A is a non-stationary point of inflection
- (e) The point A is a stationary point but could be a local maximum, a local minimum or a stationary point of inflection
- 10. Find the stationary point(s) of the curve  $y = x^4 + 4x^3 + 7$ .

## **Solutions to section test**

1. The graph is decreasing so  $\frac{dy}{dx} < 0$ .

The gradient of the graph is becoming less negative, so  $\frac{d^2 y}{dx^2} > 0$ .

2.  $y = x^{3} - 2x^{2} - 3x + 1$  $\frac{dy}{dx} = 3x^{2} - 4x - 3$  $\frac{d^{2}y}{dx^{2}} = 6x - 4$ 

The curve is convex when  $\frac{d^2 y}{dx^2} > 0$ . This is the case when x = 1 and when x = 2.

3. 
$$y = 2x^{3} - 3x^{2} + 4x - 1$$
$$\frac{dy}{dx} = 6x^{2} - 6x + 4$$
$$\frac{d^{2}y}{dx^{2}} = 12x - 6$$
The curve is concave when 
$$\frac{d^{2}y}{dx^{2}} < 0$$
$$12x - 6 < 0$$
$$2x < 1$$
$$x < \frac{1}{2}$$

- 4. (a) is false although it is true that if the gradient of the curve is positive and getting more positive, then  $\frac{d^2 y}{dx^2} > 0$ , it could also be the case that the gradient is negative and getting less negative (b) is false – it is convex (c) is true
- 5. The correct answer is that the point A is a non-stationary point of inflection.

6.  $y = x^{5} - 5x^{4} + 15x + 4$   $\frac{dy}{dx} = 5x^{4} - 20x^{3} + 15$   $\frac{d^{2}y}{dx^{2}} = 20x^{3} - 60x^{2} = 20x^{2}(x - 3)$ The points at which  $\frac{d^{2}y}{dx^{2}} = 0$  are x = 0 and x = 3. However at x = 0 the second derivative does not change sign, so the only point of inflection is x = 3.

$$\mathcal{F}. \quad \mathcal{Y} = -x^3 + 3x^2 - 1$$

$$\frac{dy}{dx} = -3x^2 + 6x$$

$$\frac{d^2y}{dx^2} = -6x + 6$$
At point of inflection  $\frac{d^2y}{dx^2} = 0 \Rightarrow -6x + 6 = 0 \Rightarrow x = 1$ 
When  $x = 1, y = -1 + 3 - 1 = 1$ 
so the point of inflection is (1, 1)

8. 
$$y = x^{3} + px^{2} + qx - 4$$
$$\frac{dy}{dx} = 3x^{2} + 2px + q$$
$$\frac{d^{2}y}{dx^{2}} = 6x + 2p$$

Since there is a stationary point of inflection at x = 2, both  $\frac{dy}{dx}$  and  $\frac{d^2y}{dx^2}$  must be zero at x = 2.

When 
$$x = 2$$
,  $\frac{d^2 y}{dx^2} = 12 + 2p$  so  $p = -6$   
When  $x = 2$ ,  $\frac{dy}{dx} = 12 + 4p + q = 12 - 24 + q$  so  $q = 12$ 

9. The correct answer is that the point A is a stationary point but could be a local maximum, a local minimum or a stationary point of inflection

10.  $y = x^4 + 4x^3 + 7$   $\frac{dy}{dx} = 4x^3 + 12x^2$ At stationary points,  $4x^3 + 12x^2 = 0$   $4x^2(x+3) = 0$  x = 0 or -3When x = 0, y = 7 so there is a stationary point at (0, 7)When x = -3, y = 81 - 108 + 7 = -20 so there is a stationary point at (-3, -20)When x = -1,  $\frac{dy}{dx} = 4 + 12 > 0$ When x = 1,  $\frac{dy}{dx} = -4 + 12 > 0$ so (0, 7) is a point of inflection. When x = -4,  $\frac{dy}{dx} = -256 + 192 < 0$ so at (-3, -20) gradient goes from negative to positive, so it is a minimum point.