Edexcel A level Maths Further differentiation

Section 3: Implicit differentiation

Notes and Examples
These notes contain subsections on

- Differentiating functions of y with respect to x
- Differentiating implicit functions
- Differentiating products of x and y
- Logarithmic differentiation

Differentiating functions of \boldsymbol{y} with respect to \boldsymbol{x}

Suppose that y is a function of x, say x^{2}. You can differentiate y to get $2 x$; but what about differentiating y^{2}, or $\sin y$ or $\ln y$? You could convert them to functions of x, i.e. $x^{4}, \sin x^{2}$ or $\ln x^{2}$; but can you find the derivative of these functions without converting into functions of x ?

For example, suppose $y=x^{2}$ as above and you want to find the derivative of y^{2} with respect to x. Let $u=y^{2}$. You want to find $\frac{\mathrm{d} u}{\mathrm{~d} x}$

$$
\begin{aligned}
& u=y^{2} \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} y}=2 y \\
& y=x^{2} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 x .
\end{aligned}
$$

Using the chain rule:

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} & =\frac{\mathrm{d} u}{\mathrm{~d} y} \times \frac{\mathrm{d} y}{\mathrm{~d} x} \\
& =2 y \frac{\mathrm{~d} y}{\mathrm{~d} x} \\
& =2 x^{2} \times 2 x \\
& \left.=4 x^{3} \quad \text { (which is indeed the derivative of } x^{4}\right)
\end{aligned}
$$

The other functions of y can be differentiated in the same way:
To differentiate $\sin y$ with respect to x, let $u=\sin y$. You want to find $\frac{\mathrm{d} u}{\mathrm{~d} x}$.

$$
\begin{aligned}
& u=\sin y \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} y}=\cos y \\
& y=x^{2} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 x
\end{aligned}
$$

Edexcel A level Further diff 3 Notes and Examples

Using the chain rule:

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} & =\frac{\mathrm{d} u}{\mathrm{~d} y} \times \frac{\mathrm{d} y}{\mathrm{~d} x} \\
& =\cos y \frac{\mathrm{~d} y}{\mathrm{~d} x} \\
& =2 x \cos y
\end{aligned}
$$

To differentiate $\ln y$ with respect to x, let $u=\ln y$. You want to find $\frac{\mathrm{d} u}{\mathrm{~d} x}$.

$$
\begin{aligned}
& u=\ln y \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} y}=\frac{1}{y} \\
& y=x^{2} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 x
\end{aligned}
$$

Using the chain rule:

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} & =\frac{\mathrm{d} u}{\mathrm{~d} y} \times \frac{\mathrm{d} y}{\mathrm{~d} x} \\
& =\frac{1}{y} \frac{\mathrm{~d} y}{\mathrm{~d} x} \\
& =\frac{1}{x^{2}} \times 2 x \\
& =\frac{2}{x}
\end{aligned}
$$

This idea can be generalised:
If y is a function of x, then $\frac{\mathrm{d}}{\mathrm{d} x}[\mathrm{f}(y)]=\frac{\mathrm{df}}{\mathrm{d} y} \times \frac{\mathrm{d} y}{\mathrm{~d} x}$

Differentiating implicit functions

An implicit function is an equation between two variables, say x and y, in which y is not given explicitly as a function of x. The equation of a circle is an example of an implicit function.

For example, $x^{2}+y^{2}=25$ is the equation of a circle, centre O and radius 5.
You can differentiate an implicit function like this by differentiating each side of the equation with respect to x :

$$
\begin{array}{ll}
& x^{2}+y^{2}=25 \\
\Rightarrow \quad & \frac{\mathrm{~d}}{\mathrm{~d} x}\left[x^{2}\right]+\frac{\mathrm{d}}{\mathrm{~d} x}\left[y^{2}\right]=\frac{\mathrm{d}}{\mathrm{~d} x}[25] \\
\Rightarrow \quad & 2 x+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \quad \infty
\end{array}
$$

Edexcel A level Further diff 3 Notes and Examples

You can now find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y by rearranging this equation:

$$
\begin{aligned}
& 2 x+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\Rightarrow \quad & 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=-2 x \\
\Rightarrow \quad & \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{2 x}{2 y}=-\frac{x}{y}
\end{aligned}
$$

This result enables you, for example, to find the gradient at the point $(3,4)$ of the circle. Here, $x=3$ and $y=4$, so $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{x}{y}=-\frac{3}{4}$.

Example 1

Show that the curve $y+y^{3}=2 \sin x$ has a turning point at the point $\left(\frac{\pi}{2}, 1\right)$.

Solution

$y+y^{3}=2 \sin x$
Differentiating implicitly gives:
$\frac{\mathrm{d}}{\mathrm{d} x}\left[y+y^{3}\right]=\frac{\mathrm{d}}{\mathrm{d} x}[2 \sin x]$
$\Rightarrow \quad \frac{\mathrm{d} y}{\mathrm{~d} x}+3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 \cos x$,
$\Rightarrow \quad \frac{\mathrm{d} y}{\mathrm{~d} x}\left(1+3 y^{2}\right)=2 \cos x$
$\Rightarrow \quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 \cos x}{1+3 y^{2}}$
At the point $\left(\frac{\pi}{2}, 1\right) x=\frac{\pi}{2}$ and $y=1$
$\Rightarrow \quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 \cos \frac{\pi}{2}}{1+3}=0$
So $\left(\frac{\pi}{2}, 1\right)$ is a turning point.

Differentiating products of \boldsymbol{x} and \boldsymbol{y}

What is the derivative of $x y^{2}$ with respect to x ?
You can use the product rule to do this.
$u=x \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=1$ and $v=y^{2} \Rightarrow \frac{\mathrm{~d} v}{\mathrm{~d} x}=2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$.
So $\frac{\mathrm{d}}{\mathrm{d} x}\left(x y^{2}\right)=u \frac{\mathrm{~d} v}{\mathrm{~d} x}+v \frac{\mathrm{~d} u}{\mathrm{~d} x}$

$$
=2 x y \frac{\mathrm{~d} y}{\mathrm{~d} x}+y^{2}
$$

Edexcel A level Further diff 3 Notes and Examples

Example 2

Given that $y^{2}+3 x y+x^{3}=25$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.

Solution

$y^{2}+3 x y+x^{3}=25$
Differentiating implicitly gives:
The product rule is used here to
$\frac{\mathrm{d}}{\mathrm{d} x}\left[y^{2}+3 x y+x^{3}\right]=\frac{\mathrm{d}}{\mathrm{d} x}[25]$ differentiate $3 x y$, with $u=3 x$ and $v=y$. It is not necessary to write out all the details of the product rule if you don't feel that you need to.
$\Rightarrow \quad 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}+3 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+3 y+3 x^{2}=0$
$\Rightarrow \quad(2 y+3 x) \frac{\mathrm{d} y}{\mathrm{~d} x}=-3 y-3 x^{2}$
$\Rightarrow \quad \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{\left(3 y+3 x^{2}\right)}{2 y+3 x}$

Logarithmic differentiation

The technique of implicit differentiation can be used to simplify differentiating complicated product and quotient functions, as in the following example.

Example 3
Find the derivative of $y=\frac{(1+x)(1-2 x)^{3}}{\sqrt{1+x^{2}}}$

Solution

$$
y=\frac{(1+x)(1-2 x)^{3}}{\sqrt{1+x^{2}}}
$$

Take logarithms of each side:

$$
\begin{aligned}
\ln y & =\ln \left[\frac{(1+x)(1-2 x)^{3}}{\sqrt{1+x^{2}}}\right] \\
& =\ln (1+x)+\ln (1-2 x)^{3}-\ln \sqrt{1+x^{2}} \\
& =\ln (1+x)+3 \ln (1-2 x)-\frac{1}{2} \ln \left(1+x^{2}\right)
\end{aligned}
$$

Now differentiate implicitly:

$$
\frac{1}{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{x+1}+\frac{3}{1-2 x} \times(-2)-\frac{1}{2} \frac{2 x}{\left(1+x^{2}\right)}
$$

Edexcel A level Further diff 3 Notes and Examples

