

Section 3: The product and quotient rules

Notes and Examples

These notes contain subsections on

- The product rule
- The quotient rule

The product rule

Suppose you want to differentiate $y = x^2 \sqrt{1+x}$. In this case, the function *y* is the product of two simpler functions, $u = x^2$ and $v = \sqrt{1+x}$. You can differentiate *u* and *v*:

$$\frac{\mathrm{d}u}{\mathrm{d}x} = 2x, \quad \frac{\mathrm{d}v}{\mathrm{d}x} = \frac{1}{2}(1+x)^{-\frac{1}{2}}$$

You might think that the derivative of y is simply the product of the derivatives of u and v. In fact, the formula is a bit more complicated:

If
$$y = u \times v$$
, then: $\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$.

This is called the **product rule**.

Applying this formula to the example above:

$$y = x^{2}\sqrt{1+x}$$

$$u = x^{2} \Rightarrow \frac{du}{dx} = 2x$$

$$v = \sqrt{1+x} \Rightarrow \frac{dv}{dx} = \frac{1}{2}(1+x)^{-\frac{1}{2}}$$

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$= x^{2} \times \frac{1}{2}(1+x)^{-\frac{1}{2}} + (1+x)^{\frac{1}{2}} \times 2x$$

The tricky part of questions like this is to simplify your answer. In this case, you can take out a factor of $\frac{1}{2}x(1+x)^{-\frac{1}{2}}$:

$$\frac{dy}{dx} = \frac{1}{2}x^{2}(1+x)^{-\frac{1}{2}} + 2x(1+x)^{\frac{1}{2}}$$
$$= \frac{1}{2}x(1+x)^{-\frac{1}{2}}(x+4(1+x))$$
$$= \frac{1}{2}x(1+x)^{-\frac{1}{2}}(5x+4)$$

Edexcel A level Maths Diff 3 Notes & Examples

Example 1

Given that $y = x^3(1+3x)^{\frac{1}{3}}$, show that $\frac{dy}{dx} = x^2(1+3x)^{-\frac{2}{3}}(3+10x)$. Hence find the turning points of this curve.

Solution

y = uv where $u = x^3, v = (1+3x)^{\frac{1}{3}}$

$$u = x^{3} \Rightarrow \frac{du}{dx} = 3x^{2}$$

$$v = (1+3x)^{\frac{1}{3}} \Rightarrow \frac{dv}{dx} = \frac{1}{3}(1+3x)^{-\frac{2}{3}} \times 3 = (1+3x)^{-\frac{2}{3}} =$$

Using the product rule:

$$\frac{dy}{dx} = v \frac{du}{dx} + u \frac{dv}{dx}$$

$$= x^{3}(1+3x)^{-\frac{2}{3}} + (1+3x)^{\frac{1}{3}} \times 3x^{2}$$

$$= x^{2}(1+3x)^{-\frac{2}{3}}(x+3+9x)^{-\frac{2}{3}}$$

$$= x^{2}(1+3x)^{-\frac{2}{3}}(3+10x) \text{ as required.}$$

The turning points occur when $\frac{dy}{dx} = 0$

$$x^{2}(1+3x)^{-\frac{2}{3}}(3+10x) = 0$$

 $\Rightarrow x = 0 \text{ or } x = -\frac{3}{10}.$
When $x = 0, y = 0$
When $x = -0.3, y = -0.0125$
So the turning points are (0, 0) and (-0.3, -0.0125).

The quotient rule

You have now learnt a technique for differentiating composite functions (the chain rule) and a technique for differentiating products. The third differentiation technique deals with quotients.

For a function y which can be expressed as a quotient of two simpler functions u and v, there is a formula for the derivative of y:

If
$$y = \frac{u}{v}$$
 then $\frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$

This is called the **quotient rule**. You can prove the quotient rule by thinking of the quotient $\frac{u}{v}$ as the product $u \times v^{-1}$ and applying the product rule.

Edexcel A level Maths Diff 3 Notes & Examples

Example 2

Differentiate $y = \frac{x^2}{1+2x^3}$, simplifying your answer. Hence find the turning points of this curve and determine their nature.

Solution

$$y = \frac{u}{v} \text{ where } u = x^2 \text{ and } v = 1 + 2x^3$$
$$u = x^2 \Rightarrow \frac{du}{dx} = 2x$$
$$v = 1 + 2x^3 \Rightarrow \frac{dv}{dx} = 6x^2$$

Using the quotient rule:

So (0, 0) is a minimum and $(1, \frac{1}{3})$ is a maximum.