Edexcel A level Mathematics Differentiation

Section 3: The product and quotient rules

Notes and Examples

These notes contain subsections on

- The product rule
- The quotient rule

The product rule

Suppose you want to differentiate $y=x^{2} \sqrt{1+x}$. In this case, the function y is the product of two simpler functions, $u=x^{2}$ and $v=\sqrt{1+x}$. You can differentiate u and v :

$$
\frac{\mathrm{d} u}{\mathrm{~d} x}=2 x, \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{1}{2}(1+x)^{-\frac{1}{2}}
$$

You might think that the derivative of y is simply the product of the derivatives of u and v. In fact, the formula is a bit more complicated:

$$
\text { If } y=u \times v \text {, then: } \quad \frac{\mathrm{d} y}{\mathrm{~d} x}=u \frac{\mathrm{~d} v}{\mathrm{~d} x}+v \frac{\mathrm{~d} u}{\mathrm{~d} x} \text {. }
$$

This is called the product rule.
Applying this formula to the example above:

$$
\begin{aligned}
y & =x^{2} \sqrt{1+x} \\
u & =x^{2} \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=2 x \\
v & =\sqrt{1+x} \Rightarrow \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{1}{2}(1+x)^{-\frac{1}{2}} \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =u \frac{\mathrm{~d} v}{\mathrm{~d} x}+v \frac{\mathrm{~d} u}{\mathrm{~d} x} \\
& =x^{2} \times \frac{1}{2}(1+x)^{-\frac{1}{2}}+(1+x)^{\frac{1}{2}} \times 2 x
\end{aligned}
$$

The tricky part of questions like this is to simplify your answer. In this case, you can take out a factor of $\frac{1}{2} x(1+x)^{-\frac{1}{2}}$:

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{1}{2} x^{2}(1+x)^{-\frac{1}{2}}+2 x(1+x)^{\frac{1}{2}} \\
& =\frac{1}{2} x(1+x)^{-\frac{1}{2}}(x+4(1+x)) \\
& =\frac{1}{2} x(1+x)^{-\frac{1}{2}}(5 x+4)
\end{aligned}
$$

Edexcel A level Maths Diff 3 Notes \& Examples

Example 1

Given that $y=x^{3}(1+3 x)^{\frac{1}{3}}$, show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}(1+3 x)^{-\frac{2}{3}}(3+10 x)$. Hence find the turning points of this curve.

Solution

$y=u v$ where $u=x^{3}, v=(1+3 x)^{\frac{1}{3}}$
$u=x^{3} \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=3 x^{2}$

Using the product rule:

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =v \frac{\mathrm{~d} u}{\mathrm{~d} x}+u \frac{\mathrm{~d} v}{\mathrm{~d} x} \\
& =x^{3}(1+3 x)^{-\frac{2}{3}}+(1+3 x)^{\frac{1}{3}} \times 3 x^{2} \\
& =x^{2}(1+3 x)^{-\frac{2}{3}}(x+3+9 x)^{\circ} \\
& =x^{2}(1+3 x)^{-\frac{2}{3}}(3+10 x) \text { as required. }
\end{aligned}
$$

The turning points occur when $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$
$x^{2}(1+3 x)^{-\frac{2}{3}}(3+10 x)=0$
$\Rightarrow x=0$ or $x=-\frac{3}{10}$.
When $x=0, y=0$
When $x=-0.3, y=-0.0125$
So the turning points are $(0,0)$ and $(-0.3,-0.0125)$.

The quotient rule

You have now learnt a technique for differentiating composite functions (the chain rule) and a technique for differentiating products. The third differentiation technique deals with quotients.

For a function y which can be expressed as a quotient of two simpler functions u and v, there is a formula for the derivative of y :

$$
\text { If } y=\frac{u}{v} \text { then } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{v \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}}{v^{2}}
$$

This is called the quotient rule. You can prove the quotient rule by thinking of the quotient $\frac{u}{v}$ as the product $u \times v^{-1}$ and applying the product rule.

Edexcel A level Maths Diff 3 Notes \& Examples

Example 2

Differentiate $y=\frac{x^{2}}{1+2 x^{3}}$, simplifying your answer. Hence find the turning points of this curve and determine their nature.

Solution

$y=\frac{u}{v}$ where $u=x^{2}$ and $v=1+2 x^{3}$
$u=x^{2} \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=2 x$
$v=1+2 x^{3} \Rightarrow \frac{\mathrm{~d} \nu}{\mathrm{~d} x}=6 x^{2}$

Using the quotient rule:

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{v \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}}{v^{2}} \\
& =\frac{\left(1+2 x^{3}\right) \times 2 x-x^{2} \times 6 x^{2}}{\left(1+2 x^{3}\right)^{2}} \\
& =\frac{2 x+4 x^{4}-6 x^{4}}{\left(1+2 x^{3}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2 x-2 x^{4}}{\left(1+2 x^{3}\right)^{2}} \\
& =\frac{2 x\left(1-x^{3}\right)}{\left(1+2 x^{3}\right)^{2}}
\end{aligned}
$$ would be complicated. It is easier to

The turning points occur when $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ $\frac{2 x\left(1-x^{3}\right)}{\left(1+2 x^{3}\right)^{2}}=0 \Rightarrow x=0$ or $x=1$
When $x=0, y=0$
When $x=1, y=\frac{1}{3}$.

x	$x<0$	$x=0$	$0<x<1$	$x=1$	$x>1$
$\frac{\mathrm{~d} y}{\mathrm{~d} x}$	-	0	+	0	-

So $(0,0)$ is a minimum and $\left(1, \frac{1}{3}\right)$ is a maximum.

