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Section 3: The product and quotient rules 
 
Notes and Examples 
 
These notes contain subsections on 

 The product rule 

 The quotient rule 
 
 

The product rule 
 

Suppose you want to differentiate 2 1 y x x . In this case, the function y is 

the product of two simpler functions, 2u x  and 1 v x . You can 

differentiate u and v: 
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You might think that the derivative of y is simply the product of the derivatives 
of u and v. In fact, the formula is a bit more complicated: 

 

If y = u × v, then:    
d d d
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This is called the product rule. 
 
Applying this formula to the example above: 
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The tricky part of questions like this is to simplify your answer. In this case, 

you can take out a factor of 
1
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2
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
x x : 
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Example 1 

Given that 
1
33(1 3 ) y x x , show that 
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x
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turning points of this curve. 

 

Solution  

y = uv  where 
1
33, (1 3 )  u x v x   

 

3 2d
3

d
  

u
u x x

x
  

 
1 2 2
3 3 31

3

d
1 3 (1 3 ) 3 (1 3 )

d

 
       

v
v x x x

x
 

 

Using the product rule: 
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The turning points occur when 
d

d

y

x
 = 0 

2
32(1 3 ) (3 10 ) 0


  x x x  

 x = 0 or x =  3
10

. 

When x = 0, y = 0 

When x = 0.3, y = 0.0125 

So the turning points are (0, 0) and (0.3, 0.0125). 

 

 

The quotient rule 
 
You have now learnt a technique for differentiating composite functions (the 
chain rule) and a technique for differentiating products. The third 
differentiation technique deals with quotients. 
 
For a function y which can be expressed as a quotient of two simpler functions 
u and v, there is a formula for the derivative of y: 

If 
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This is called the quotient rule. You can prove the quotient rule by thinking of 

the quotient 
u

v
 as the product 1u v  and applying the product rule.  

using the chain rule 

Take out  
2
32 1 3


x x  

as a factor 
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Example 2 

Differentiate 
2

31 2
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

x
y

x
, simplifying your answer. Hence find the turning points of 

this curve and determine their nature. 

 

Solution 
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Using the quotient rule: 
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The turning points occur when 
d
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 = 0  
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When x = 0, y = 0  

When x = 1, y = 1
3

. 

 

 

 

 

So (0, 0) is a minimum and (1, 1
3

) is a maximum. 

 

It is best to factorise answers 
as far as possible. 
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To investigate the nature of the turning 

points, you could find 

2

2

d

d

y

x
, but this 

would be complicated. It is easier to 

investigate the sign of 
d

d

y

x
 for values of x 

before and after the stationary values. 
This can be done in a table like this: 


