Edexcel A level Mathematics Differentiation

Section 2: The chain rule

Notes and Examples

This chapter extends methods for differentiating functions.
These notes contain subsections on

- The chain rule
- Rates of change
- Inverse functions

The chain rule

Suppose you want to differentiate the function $y=(2 x+5)^{3}$. You could expand the brackets:

$$
\begin{aligned}
y & =(2 x+5)^{3} \\
& =(2 x)^{3}+3(2 x)^{2} \cdot 5+3(2 x) \cdot 5^{2}+5^{3} \\
& =8 x^{3}+60 x^{2}+150 x+125
\end{aligned}
$$

Then you could differentiate term by term:

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\left(8 \times 3 x^{2}\right)+(60 \times 2 x)+150 \\
& =24 x^{2}+120 x+150
\end{aligned}
$$

This result can be factorised:

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =24 x^{2}+120 x+150 \\
& =6\left(4 x^{2}+20 x+25\right) \\
& =6(2 x+5)^{2}
\end{aligned}
$$

This suggests that there is perhaps a more efficient method.
The expression for the derivative can be written as

To make the method is clearer, let $u=2 x+5$. Then $y=u^{3}$

Edexcel A level Maths Diff 2 Notes \& Examples

Now $\frac{\mathrm{d} y}{\mathrm{~d} u}=3 u^{2}$ and $\frac{\mathrm{d} u}{\mathrm{~d} x}=2$
So $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \times 3(2 x+5)^{2}=3 u^{2} \times 2=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \times 3(2 x+5)^{2}=3 u^{2} \times 2=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}$.
This is called the chain rule: $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}$.

Example 1

Differentiate $y=\left(3 x^{2}-4\right)^{7}$

Solution

Let $u=3 x^{2}-4 \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=6 x$
$y=u^{7} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} u}=7 u^{6}$
Using the chain rule:

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x} \\
& =7 u^{6} \times 6 x \\
& =42 x u^{6} \\
& =42 x\left(3 x^{2}-4\right)^{6}
\end{aligned}
$$

After some practice, you may find that you can differentiate composite functions like the one in Example 1 without introducing the variable u.

Example 2

Differentiate $y=\sqrt{1+x^{2}}$

Solution

Let $u=1+x^{2} \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=2 x$

Edexcel A level Maths Diff 2 Notes \& Examples

$$
y=\sqrt{u}=u^{\frac{1}{2}} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} u}=\frac{1}{2} u^{-\frac{1}{2}}
$$

Using the chain rule:

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x} \\
& =\frac{1}{2} u^{-\frac{1}{2}} \times 2 x \\
& =\frac{x}{\sqrt{u}} \\
& =\frac{x}{\sqrt{1+x^{2}}}
\end{aligned}
$$

Alternatively, differentiate directly:

Rates of change
The chain rule is also used to solve problems involving related rates of change.

Example 3

A bank of a reservoir is modelled by the curve $y=\frac{x^{2}}{50}-2$ for $10 \leq x \leq 20$, where x is measured in metres (see diagram).

The width of the reservoir is 15 m and is increasing at a rate of 0.2 m per day.
Calculate the rate of change of the depth of the reservoir.

Solution

$y=\frac{x^{2}}{50}-2 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{x}{25}$.
When $x=15, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{15}{25}=\frac{3}{5}$

Edexcel A level Maths Diff 2 Notes \& Examples

The rate of increase in width is given by $\frac{\mathrm{d} x}{\mathrm{~d} t}$, so $\frac{\mathrm{d} x}{\mathrm{~d} t}=0.2$.
The rate of change of depth is given by $\frac{\mathrm{d} y}{\mathrm{~d} t}$.
By the chain rule:

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} t} & =\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t} \\
& =\frac{3}{5} \times 0.2 \\
& =0.12
\end{aligned}
$$

So the rate of change of depth is 0.12 m per day.

Inverse functions

For the function $y=x^{3}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x^{2}$
The function can be rewritten with x as the subject: $x=y^{\frac{1}{3}}$,
Differentiating this gives $\frac{\mathrm{d} x}{\mathrm{~d} y}=\frac{1}{3} y^{-\frac{2}{3}}=\frac{1}{3 y^{\frac{2}{3}}}=\frac{1}{3 x^{2}}$.
Try this with other functions.
You should find that your results suggest the relationship

$$
\frac{\mathrm{d} x}{\mathrm{~d} y}=\frac{1}{\frac{\mathrm{~d} y}{\mathrm{~d} x}}
$$

This relationship can be useful if you need to differentiate a function in which x is given in terms of y and which cannot easily be rewritten to give y in terms of x. (However, functions like this can also be differentiated using implicit differentiation - this will be covered later in A level Mathematics).

