Edexcel A level Maths Further differentiation

Section 1: Differentiating exponentials and logarithms

Notes and Examples

These notes contain subsections on

- Differentiating the exponential functions
- Differentiating other exponential functions
- Differentiating logarithms

Differentiating exponential functions

You can learn something about the derivative of exponential functions like $y=a^{x}$ by trying to differentiate using first principles:

Suppose we increase x by a small change δx, resulting in a small change in y δy :

$$
\text { Subtracting: } \quad \begin{aligned}
& y=a^{x} \\
& y+\delta y=a^{x+\delta x} \\
& \delta y=a^{x+\delta x}-a^{x} \\
&=a^{x} a^{\delta x}-a^{x} \\
&=a^{x}\left(a^{\delta x}-1\right)
\end{aligned}
$$

Dividing by $\delta x: \quad \frac{\delta y}{\delta x}=\frac{a^{x}\left(a^{\delta x}-1\right)}{\delta x}$
$\Rightarrow \quad \frac{\mathrm{d} y}{\mathrm{~d} x}=k a^{x}$ where k is the limit of the expression $\frac{a^{\delta x}-1}{\delta x}$ as $\delta x \rightarrow 0$.
Putting $x=0$ into the expression for $\frac{\delta y}{\delta x}$ tells you that k is actually the gradient of the graph $y=a^{x}$ at the origin.

It follows that if you can find a value for a so that this gradient is 1 then, for this value of $a, \frac{\mathrm{~d} y}{\mathrm{~d} x}=a^{x}$. This value is just the constant $\mathrm{e}=2.718 \ldots$, which is the base of natural logarithms. You can verify this result numerically in your calculator, by finding the value of $\frac{\mathrm{e}^{0.0001}-1}{0.0001}$.
It follows that:

$$
y=\mathrm{e}^{x} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\mathrm{e}^{x}
$$

This result can be extended to differentiate $y=\mathrm{e}^{k x}$, where k is a constant, using the chain rule:

Edexcel A level Maths Further diff 1 Notes \& Examples

$$
\begin{aligned}
& y=\mathrm{e}^{k x} \\
& \text { Let } u=k x \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=k \\
& y=\mathrm{e}^{u} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} u}=\mathrm{e}^{u}
\end{aligned}
$$

Using the chain rule:

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x} \\
& =k \mathrm{e}^{u} \\
& =k \mathrm{e}^{k x}
\end{aligned}
$$

$$
y=\mathrm{e}^{k x} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=k \mathrm{e}^{k x}
$$

Example 1

Differentiate:
(i) $y=x \mathrm{e}^{2 x}$
(ii) $y=\frac{x^{2}}{1+2 \mathrm{e}^{3 x}}$
(iii) $y=\mathrm{e}^{x^{2}}$

Solution

(i) Using the product rule with $u=x$ and $v=\mathrm{e}^{2 x}$

$$
\begin{aligned}
& \begin{aligned}
u & =x \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=1 \\
v & =\mathrm{e}^{2 x} \Rightarrow \frac{\mathrm{~d} v}{\mathrm{~d} x}=2 \mathrm{e}^{2 x} \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =v \frac{\mathrm{~d} u}{\mathrm{~d} x}+u \frac{\mathrm{~d} v}{\mathrm{~d} x} \\
& =x \times 2 \mathrm{e}^{2 x}+1 \times \mathrm{e}^{2 x} . \\
& =(2 x+1) \mathrm{e}^{2 x}
\end{aligned}
\end{aligned}
$$

(ii) Using the quotient rule with $u=x^{2}$ and $v=1+2 \mathrm{e}^{3 x}$,

$$
\begin{aligned}
u & =x^{2} \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=2 x \\
v & =1+2 \mathrm{e}^{3 x} \Rightarrow \frac{\mathrm{~d} v}{\mathrm{~d} x}=6 \mathrm{e}^{3 x} \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =\frac{v \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}}{v^{2}} \\
& =\frac{\left(1+2 \mathrm{e}^{3 x}\right) 2 x-x^{2} \times 6 \mathrm{e}^{3 x}}{\left(1+2 \mathrm{e}^{3 x}\right)^{2}} \\
& =\frac{2 x+4 x \mathrm{e}^{3 x}-6 x^{2} \mathrm{e}^{3 x}}{\left(1+2 \mathrm{e}^{3 x}\right)^{2}}
\end{aligned}
$$

Edexcel A level Maths Further diff 1 Notes \& Examples

(iii) Using the chain rule with $u=x^{2}$

$$
\begin{aligned}
& u=x^{2} \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=2 x \\
& y=\mathrm{e}^{u} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} u}=\mathrm{e}^{u} \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x} \\
& =\mathrm{e}^{u} \times 2 x \\
& =2 x \mathrm{e}^{x^{2}}
\end{aligned}
$$

Differentiating other exponential functions

You may also need to differentiate other exponential functions, such as $y=2^{x}$.

You can do this by expressing the function in terms of the exponential function:

$$
y=2^{x}=\mathrm{e}^{\ln 2^{x}}=\mathrm{e}^{x \ln 2}
$$

Then you can use the chain rule:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\ln 2 \times \mathrm{e}^{x \ln 2}=\ln 2 \times \mathrm{e}^{\ln 2^{x}}=\ln 2 \times 2^{x}=2^{x} \ln 2
$$

More generally:

$$
y=a^{x} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=a^{x} \ln a
$$

Differentiating logarithms

You can now differentiate the inverse function of $y=\mathrm{e}^{x}$, which is $y=\ln x$:

$$
\begin{aligned}
& y=\ln x \Rightarrow x=\mathrm{e}^{y} \\
& \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} y}=\mathrm{e}^{y} \\
& \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{\mathrm{e}^{y}}=\frac{1}{x} . \\
& y=\ln x \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{x}
\end{aligned}
$$

Example 2

Differentiate:
(i) $\sqrt{x} \ln x$
(ii) $\frac{\ln x}{1+\ln x}$
(iii) $\ln \left(1+x^{3}\right)$

Edexcel A level Maths Further diff 1 Notes \& Examples

Solution

(i) Using the product rule with $u=\sqrt{x}$ and $v=\ln x$

$$
\begin{aligned}
& u=\sqrt{x}=x^{\frac{1}{2}} \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{1}{2} x^{\frac{1}{2}}=\frac{1}{2 \sqrt{x}} \\
& v= \ln x \Rightarrow \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{1}{x} \\
& \begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =v \frac{\mathrm{~d} u}{\mathrm{~d} x}+u \frac{\mathrm{~d} v}{\mathrm{~d} x} \\
& =\sqrt{x} \times \frac{1}{x}+\frac{1}{2 \sqrt{x}} \ln x \\
& =\frac{1}{\sqrt{x}}+\frac{\ln x}{2 \sqrt{x}} \\
& =\frac{2+\ln x}{2 \sqrt{x}}
\end{aligned}
\end{aligned}
$$

(ii) Using the quotient rule with $u=\ln x$ and $v=1+\ln x$

$$
\begin{aligned}
u= & \ln x \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{1}{x} \\
v & =1+\ln x \Rightarrow \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{1}{x} \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =\frac{v \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}}{v^{2}} \\
& =\frac{(1+\ln x) \times \frac{1}{x}-\ln x \times \frac{1}{x}}{(1+\ln x)^{2}} \\
& =\frac{1+\ln x-\ln x}{x(1+\ln x)^{2}} \\
& =\frac{1}{x(1+\ln x)^{2}}
\end{aligned}
$$

(iii) Using the chain rule with $u=1+x^{3}$

$$
\begin{aligned}
& u=1+x^{3} \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=3 x^{2} \\
& \begin{aligned}
y & =\ln u \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} u}=\frac{1}{u} \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x} \\
& =\frac{1}{u} \times 3 x^{2} \\
& =\frac{3 x^{2}}{\left(1+x^{3}\right)}
\end{aligned}
\end{aligned}
$$

Edexcel A level Maths Further diff 1 Notes \& Examples

Using logarithms gives an alternative approach to finding the derivative of $y=a^{x}$.
You can take logarithms of both sides:

$$
\ln y=\ln a^{x}=x \ln a
$$

Then rewrite as

$$
x=\frac{\ln y}{\ln a}
$$

and differentiate x with respect to y.

$$
\frac{\mathrm{d} x}{\mathrm{~d} y}=\frac{1}{y \ln a}
$$

So

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=y \ln a=a^{x} \ln a
$$

