

Section 1: Differentiating exponentials and logarithms

Notes and Examples

These notes contain subsections on

- **Differentiating the exponential functions**
- Differentiating other exponential functions
- **Differentiating logarithms**

Differentiating exponential functions

You can learn something about the derivative of exponential functions like $y = a^x$ by trying to differentiate using first principles:

Suppose we increase x by a small change δx , resulting in a small change in y δy:

Subtracting:

Subtracting:

$$y + \delta y = a^{x+\delta x}$$

$$\delta y = a^{x+\delta x} - a^{x}$$

$$= a^{x}a^{\delta x} - a^{x}$$

$$= a^{x}(a^{\delta x} - 1)$$
Dividing by δx :

$$\frac{\delta y}{\delta x} = \frac{a^{x}(a^{\delta x} - 1)}{\delta x}$$

 $\Rightarrow \frac{dy}{dx} = ka^x$ where k is the limit of the expression $\frac{a^{\delta x} - 1}{\delta x}$ as $\delta x \to 0$.

Putting x = 0 into the expression for $\frac{\delta y}{\delta x}$ tells you that k is actually the gradient of the graph $y = a^x$ at the origin.

It follows that if you can find a value for a so that this gradient is 1 then, for this value of a, $\frac{dy}{dx} = a^x$. This value is just the constant e = 2.718..., which is the base of natural logarithms. You can verify this result numerically in your calculator, by finding the value of $\frac{e^{0.0001}-1}{0.0001}$.

It follows that:

$$y = e^x \implies \frac{dy}{dx} = e^x$$

This result can be extended to differentiate $y = e^{kx}$, where k is a constant, using the chain rule:

 $y = e^{kx}$ Let $u = kx \Rightarrow \frac{du}{dx} = k$ $y = e^{u} \Rightarrow \frac{dy}{du} = e^{u}$ Using the chain rule: $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$ $= ke^{u}$ $= ke^{kx}$ $y = e^{kx} \Rightarrow \frac{dy}{dx} = ke^{kx}$

Example 1

Differentiate:

(i)
$$y = xe^{2x}$$
 (ii)

Solution

(i) Using the product rule with u = x and $v = e^{2x}$

 $y = \frac{x^2}{1 + 2e^{3x}}$

(iii) $y = e^{x^2}$

$$u = x \Longrightarrow \frac{du}{dx} = 1$$
$$v = e^{2x} \Longrightarrow \frac{dv}{dx} = 2e^{2x}$$
$$\frac{dy}{dx} = v\frac{du}{dx} + u\frac{dv}{dx}$$
$$= x \times 2e^{2x} + 1 \times e^{2x}$$
$$= (2x+1)e^{2x}$$

(ii) Using the quotient rule with $u = x^2$ and $v = 1 + 2e^{3x}$,

$$u = x^{2} \Rightarrow \frac{du}{dx} = 2x$$

$$v = 1 + 2e^{3x} \Rightarrow \frac{dv}{dx} = 6e^{3x}$$

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^{2}}$$

$$= \frac{(1 + 2e^{3x})2x - x^{2} \times 6e^{3x}}{(1 + 2e^{3x})^{2}}$$

$$= \frac{2x + 4xe^{3x} - 6x^{2}e^{3x}}{(1 + 2e^{3x})^{2}}$$

(iii) Using the chain rule with $u = x^2$ $u = x^2 \Rightarrow \frac{du}{dx} = 2x$ $y = e^u \Rightarrow \frac{dy}{du} = e^u$ $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$ $= e^u \times 2x$ $= 2xe^{x^2}$

Differentiating other exponential functions

You may also need to differentiate other exponential functions, such as $y = 2^x$.

You can do this by expressing the function in terms of the exponential function:

$$y = 2^x = e^{\ln 2^x} = e^{x \ln 2}$$

Then you can use the chain rule:

$$\frac{dy}{dx} = \ln 2 \times e^{x \ln 2} = \ln 2 \times e^{\ln 2^x} = \ln 2 \times 2^x = 2^x \ln 2$$

More generally:

$$y = a^x \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = a^x \ln a$$

Differentiating logarithms

You can now differentiate the inverse function of $y = e^x$, which is $y = \ln x$:

$$y = \ln x \Longrightarrow x = e^{y}$$
$$\Rightarrow \frac{dx}{dy} = e^{y}$$
$$\Rightarrow \frac{dy}{dx} = \frac{1}{e^{y}} = \frac{1}{x}.$$
$$y = \ln x \Longrightarrow \frac{dy}{dx} = \frac{1}{x}$$

	Example 2 Differentiate:		
$\sum_{i=1}^{n}$	(i) $\sqrt{x} \ln x$	(ii) $\frac{\ln x}{1+\ln x}$	(iii) $\ln(1+x^3)$

Solution

(i) Using the product rule with $u = \sqrt{x}$ and $v = \ln x$

$$u = \sqrt{x} = x^{\frac{1}{2}} \Longrightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$$
$$v = \ln x \Longrightarrow \frac{\mathrm{d}v}{\mathrm{d}x} = \frac{1}{x}$$
$$\frac{\mathrm{d}y}{\mathrm{d}x} = v\frac{\mathrm{d}u}{\mathrm{d}x} + u\frac{\mathrm{d}v}{\mathrm{d}x}$$
$$= \sqrt{x} \times \frac{1}{x} + \frac{1}{2\sqrt{x}}\ln x$$
$$= \frac{1}{\sqrt{x}} + \frac{\ln x}{2\sqrt{x}}$$
$$= \frac{2 + \ln x}{2\sqrt{x}}$$

Using the quotient rule with $u = \ln x$ and $v = 1 + \ln x$ $u = \ln x \Rightarrow \frac{du}{dx} = \frac{1}{x}$

$$u = \ln x \implies \frac{dv}{dx} = \frac{1}{x}$$

$$v = 1 + \ln x \implies \frac{dv}{dx} = \frac{1}{x}$$

$$\frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

$$= \frac{(1 + \ln x) \times \frac{1}{x} - \ln x \times \frac{1}{x}}{(1 + \ln x)^2}$$

$$= \frac{1 + \ln x - \ln x}{x(1 + \ln x)^2}$$

$$= \frac{1}{x(1 + \ln x)^2}$$

(iii) Using the chain rule with $u = 1 + x^3$ $u = 1 + x^3 \Rightarrow \frac{du}{dt} = 3x^2$

$$u = 1 + x^{3} \Rightarrow \frac{du}{dx} = 3.$$

$$y = \ln u \Rightarrow \frac{dy}{du} = \frac{1}{u}$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$= \frac{1}{u} \times 3x^{2}$$

$$= \frac{3x^{2}}{(1 + x^{3})}$$

Using logarithms gives an alternative approach to finding the derivative of $y = a^x$. You can take logarithms of both sides: $\ln y = \ln a^x = x \ln a$ Then rewrite as $x = \frac{\ln y}{\ln a}$ and differentiate x with respect to y. $\frac{dx}{dy} = \frac{1}{y \ln a}$ So $\frac{dy}{dx} = y \ln a = a^x \ln a$