Edexcel A level Maths Further differentiation

Section 2: Differentiating trigonometric functions

Notes and Examples

These notes contain subsections on

- The derivative of $\sin x$
- The derivative of $\cos x$
- The derivative of $\tan x$
- Differentiating functions involving sine, cosine and tangent

The derivative of $\sin x$

What does the derivative of $y=\sin x$ look like?

- It is clearly a periodic function, with period 2π, as the values of the gradient of the function must repeat itself every 2π just as y does;

Using this information, you can sketch the graph of the derivative of $\sin x$:

This suggests that $y \neq \cos x$ might fit the picture, and this is in fact the case, although you need to know more about trig functions to prove this.

Edexcel A level Maths Further diff 2 Notes \& Examples

Note: It is important to remember that this result is only true if x is measured in radians! If you are measuring in degrees, the gradient will not be between -1 and 1.

The derivative of $\cos \boldsymbol{x}$

What about the derivative of $\cos x$? The graph of $\cos x$ is that of $\sin x$ translated $\frac{\pi}{2}$ to the left, so the gradient function will be that of $\sin x$ translated $\frac{\pi}{2}$ to the left:

This looks like the reflection of $y=\sin x$ in the x-axis, which is $y=-\sin x$. So:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(\sin x)=\cos x, \frac{\mathrm{~d}}{\mathrm{~d} x}(\cos x)=-\sin x
$$

The derivative of $\tan x$

What about the derivative of $\tan x$?
You can do this by applying the quotient rule to trig functions.

Example 1

Using the derivatives of $\sin x$ and $\cos x$, prove that the derivative of $\tan x$ is $\sec ^{2} x$.

Solution

You know that $\tan x=\frac{\sin x}{\cos x}$.
Using the quotient rule with $u=\sin x$ and $v=\cos x$
$u=\sin x \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=\cos x$
$v=\cos x \Rightarrow \frac{\mathrm{~d} v}{\mathrm{~d} x}=-\sin x$

Edexcel A level Maths Further diff 2 Notes \& Examples

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{v \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}}{v^{2}} \\
& =\frac{\cos x \times \cos x-\sin x \times(-\sin x)}{(\cos x)^{2}} \\
& =\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x} \\
& =\frac{1}{\cos ^{2} x} \\
& =\sec ^{2} x
\end{aligned}
$$

This is another result which you should remember and may be quoted.

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(\tan x)=\sec ^{2} x
$$

Differentiating functions involving sine, cosine and tangent

You can now apply all the differentiation techniques you have learned to functions involving sines, cosines and tangents.

Functions of the form $y=\sin k x, y=\cos k x$ and $y=\tan k x$, where k is a constant, can be differentiated using the chain rule.

Example 2

Differentiate $y=\sin 2 x$

Solution

Using the chain rule with $u=2 x$:

$$
\begin{aligned}
u & =2 x \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=2 \\
y & =\sin u \Rightarrow \frac{d y}{d u}=\cos u \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x} \\
& =\cos u \times 2 \\
& =2 \cos 2 x
\end{aligned}
$$

The result from Example 2 can be generalised:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(\sin k x)=k \cos k x, \frac{\mathrm{~d}}{\mathrm{~d} x}(\cos k x)=-k \sin k x \quad, \quad \frac{\mathrm{~d}}{\mathrm{~d} x}(\tan k x)=k \sec ^{2} k x
$$

You can use these results directly, without having to write out the chain rule.

Edexcel A level Maths Further diff 2 Notes \& Examples

Here are some more examples.

Example 3

Differentiate:
(i) $\cos ^{2} x$
(ii) $\sin x^{\circ}$
(iii) $\mathrm{e}^{x} \tan x$
(iv) $\frac{\sin x}{1+\cos x}$,

Solution

(i) Using the chain rule:

$$
\begin{aligned}
& u=\cos x \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=-\sin x \\
& \begin{aligned}
y & =u^{2} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} u}=2 u \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x} \\
& =2 u \times(-\sin x) \\
& =-2 \cos x \sin x
\end{aligned}
\end{aligned}
$$

(ii)

(iii) Using the product rule:
$u=\mathrm{e}^{x} \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=\mathrm{e}^{x}$
$v=\tan x \Rightarrow \frac{\mathrm{~d} v}{\mathrm{~d} x}=\sec ^{2} x$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=u \frac{\mathrm{~d} v}{\mathrm{~d} x}+v \frac{\mathrm{~d} u}{\mathrm{~d} x}$
$=\mathrm{e}^{x} \sec ^{2} x+\mathrm{e}^{x} \tan x$
(iv) Using the quotient rule:

$$
\begin{aligned}
& u=\sin x \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=\cos x \\
& v=1+\cos x \Rightarrow \frac{\mathrm{~d} v}{\mathrm{~d} x}=-\sin x
\end{aligned}
$$

Edexcel A level Maths Further diff 2 Notes \& Examples

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{v \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}}{v^{2}} \\
& =\frac{(1+\cos x) \cos x-\sin x(-\sin x)}{(1+\cos x)^{2}} \\
& =\frac{\cos x+\cos ^{2} x+\sin ^{2} x}{(1+\cos x)^{2}} \\
& =\frac{\cos x+1}{(1+\cos x)^{2}} \quad 0 \\
& =\frac{1}{1+\cos x}
\end{aligned}
$$

