

Section 2: Differentiating trigonometric functions

Notes and Examples

These notes contain subsections on

- The derivative of sin x
- The derivative of cos x
- <u>The derivative of tan x</u>
- Differentiating functions involving sine, cosine and tangent

The derivative of sin x

What does the derivative of $y = \sin x$ look like?

 It is clearly a periodic function, with period 2π, as the values of the gradient of the function must repeat itself every 2π just as y does;

Using this information, you can sketch the graph of the derivative of sin *x*:

This suggests that $y \pm \cos x$ might fit the picture, and this is in fact the case, although you need to know more about trig functions to prove this.

Edexcel A level Maths Further diff 2 Notes & Examples

Note: It is important to remember that this result is only true if x is measured in radians! If you are measuring in degrees, the gradient will not be between -1 and 1.

The derivative of cos x

What about the derivative of cos x? The graph of cos x is that of sin x translated $\frac{\pi}{2}$ to the left: the left, so the gradient function will be that of sin x translated $\frac{\pi}{2}$ to the left: $y = \cos x$ gradient of $y = \cos x$

This looks like the reflection of $y = \sin x$ in the *x*-axis, which is $y = -\sin x$. So:

 $\frac{\mathrm{d}}{\mathrm{d}x}(\sin x) = \cos x \; , \; \frac{\mathrm{d}}{\mathrm{d}x}(\cos x) = -\sin x$

The derivative of tan x

What about the derivative of tan *x*? You can do this by applying the quotient rule to trig functions.

Example 1

Using the derivatives of sin x and cos x, prove that the derivative of tan x is $\sec^2 x$.

Solution

You know that $\tan x = \frac{\sin x}{\cos x}$.

Using the quotient rule with $u = \sin x$ and $v = \cos x$

$$u = \sin x \Longrightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = \cos x$$
$$v = \cos x \Longrightarrow \frac{\mathrm{d}v}{\mathrm{d}x} = -\sin x$$

Edexcel A level Maths Further diff 2 Notes & Examples

This is another result which you should remember and may be quoted.

Differentiating functions involving sine, cosine and tangent

You can now apply all the differentiation techniques you have learned to functions involving sines, cosines and tangents.

Functions of the form $y = \sin kx$, $y = \cos kx$ and $y = \tan kx$, where *k* is a constant, can be differentiated using the chain rule.

Example 2 Differentiate $y = \sin 2x$

Solution Using the chain rule with u = 2x: $u = 2x \Rightarrow \frac{du}{dx} = 2$ $y = \sin u \Rightarrow \frac{dy}{du} = \cos u$ $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$ $= \cos u \times 2$ $= 2\cos 2x$

The result from Example 2 can be generalised:

$$\frac{\mathrm{d}}{\mathrm{d}x}(\sin kx) = k\cos kx , \ \frac{\mathrm{d}}{\mathrm{d}x}(\cos kx) = -k\sin kx , \ \frac{\mathrm{d}}{\mathrm{d}x}(\tan kx) = k\sec^2 kx$$

You can use these results directly, without having to write out the chain rule.

Example 3 Differentiate: (i) $\cos^2 x$ (ii) $\sin x^{\circ}$ (iii) $e^x \tan x$ (iv) $\frac{\sin x}{1+\cos x}$, **Solution** (i) Using the chain rule: $u = \cos x \Longrightarrow \frac{\mathrm{d}u}{\mathrm{d}r} = -\sin x$ $y = u^2 \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}u} = 2u$ $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x}$ You can only differentiate trig functions when they are measured $= 2u \times (-\sin x)$ in radians, so convert to radians $= -2\cos x \sin x$ by multiplying by 180 $y = \sin x^\circ = \sin\left(\frac{\pi x}{180}\right)$ (ii) $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\pi}{180} \cos\left(\frac{\pi x}{180}\right)$ Using the standard result for differentiating $\cos kx$ $=\frac{\pi}{180}\cos x^\circ$

(iii) Using the product rule: $u = e^{x} \Rightarrow \frac{du}{dx} = e^{x}$ $v = \tan x \Rightarrow \frac{dv}{dx} = \sec^{2} x$ $\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$

$$x \quad dx \quad dx = e^x \sec^2 x + e^x \tan x$$

(iv) Using the quotient rule: $u = \sin x \Rightarrow \frac{du}{dx} = \cos x$ $v = 1 + \cos x \Rightarrow \frac{dv}{dx} = -\sin x$

Edexcel A level Maths Further diff 2 Notes & Examples

$$\frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

$$= \frac{(1 + \cos x) \cos x - \sin x(-\sin x)}{(1 + \cos x)^2}$$

$$= \frac{\cos x + \cos^2 x + \sin^2 x}{(1 + \cos x)^2}$$
Notice the use of trigonometric identities to simplify results.
$$= \frac{\cos x + 1}{(1 + \cos x)^2}$$

$$= \frac{1}{1 + \cos x}$$