

Section 1: Using parametric equations

Notes and Examples

These notes contain subsections on

- <u>The definition of a parametric equation</u>
- Sketching a parametric curve
- Finding the cartesian equation of a curve
- <u>The parametric equation of a circle</u>

The definition of a parametric equation

An equation like y = 5x + 1 or $y = 3\sin x + 4\cos x$ or $x^2 + y^2 = 1$ is called a **cartesian equation**. A cartesian equation gives a direct relationship between *x* and *y*.

In **parametric equations** x and y are both defined in terms of a third variable (**parameter**) usually t or θ .

For example x = t $y = t^2$ and $y = \sin \theta$ are a pair of **parametric equations** are also a pair of **parametric equations**.

Parametric equations can be used for a complicated curve which doesn't have a simple Cartesian equation.

Sketching a parametric curve

To sketch a curve given its parametric equations follow these steps.

Step 1 Make a table like this one:

$t \text{ or } \theta$		
x		
у		

- **Step 2** Choose values of t or θ (these will be usually be given to you)
- **Step 3** Work out the corresponding values of *x* and *y* using the parametric equations.
- **Step 4** Plot the (*x*, *y*) coordinates. Join them up in a smooth curve.

These examples shows you how to do this.

Example 1

A curve has the parametric equations x = 3t, $y = t^2$. Sketch the curve for $-4 \le t \le 4$

Mathematics® Education Innovation

Solution

Example 2

A curve has the parametric equations $x = 1 + 2\cos\theta$, $y = 3 + 2\sin\theta$. Sketch the curve for $0^{\circ} \le \theta \le 360^{\circ}$

Solution

θ	0°	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°	360°
x	3	2.73	2	1	0	-0.73	-1	-0.73	0	1	2	2.73	3
y	3	4	4.73	5	4.73	4	3	2	1.27	1	1.27	2	3

Finding the cartesian equation of a curve

To find the cartesian equation of a curve from its parametric equations you need to eliminate the parameter *t* or θ .

It is not always possible to find the Cartesian equation of a curve defined parametrically.

There are essentially 3 methods which you will need to use depending on the parametric equations.

Method 1

Use this method when it is straightforward to make *t* the subject of one equation.

- **Step 1** Make *t* the subject of one of the parametric equations.
- **Step 2** Substitute your equation for *t* into the other parametric equation.
- Step 3 Simplify.

Example 3

Find the cartesian equation of the curve defined by the parametric equations x = 3t + 2, $y = 1 - t^2$

Solution

Step 1	Make <i>t</i> the subject of $x = 3t + 2$:	$t = \frac{x-2}{3} \qquad \textcircled{1}$
Step 2	Substitute ① into $y = 1 - t^2$:	$y = 1 - \left(\frac{x-2}{3}\right)^2$
Step 3	Simplify:	$y = 1 - \left(\frac{x-2}{3}\right)^2$
		$y = 1 - \frac{\left(x - 2\right)^2}{9}$

Sometimes it is easier to rearrange both equations to give an expression for t, as shown in the next example.

Example 4

Solution

Find the cartesian equation of the curve defined by the parametric equations

$$x = \frac{t}{t+1}, \quad y = \frac{t}{t-1}.$$

$x = \frac{t}{t+1}$	$\Rightarrow x(t+1) = t$	$y = \frac{t}{t-1}$	$\Rightarrow y(t-1) = t$
$l \pm 1$	$\Rightarrow tx + x = t$	l-1	$\Rightarrow ty - y = t$
	$\Rightarrow t - tx = x$		$\Rightarrow ty - t = y$
	$\Rightarrow t(1-x) = x$		$\Rightarrow t(y-1) = y$
	$\Rightarrow t = \frac{x}{1-x}$		$\Rightarrow t = \frac{y}{y-1}$

Equating the two expressions for t: $\frac{x}{1-x} = \frac{y}{y-1}$ x(y-1) = y(1-x) xy - x = y - xy 2xy - y = x y(2x-1) = x $y = \frac{x}{2x-1}$

Method 2

Use this method when it is **not** straightforward to make *t* the subject of one equation.

Step 1	Check whether adding/subtracting the two equations will result in a 3 rd equation in which <i>t</i> can easily be made the subject.			
Step 2	If not, look to rearrange the equations (e.g. squaring, cross multiplying) so this can be done. Then proceed as method 1.			

Method 3

Use this method when you have trigonometric functions in the parametric equations.

Step 1	Find an identity which connects the two trigonometric functions.
Step 2	Rearrange the parametric equations so that you can substitute
	them into the trig identity.
Step 3	Simplify.

Example 5

Find the cartesian equation of the curve defined by the parametric equations $x = 4 + \cos \theta$, $y = 2 \cos 2\theta$

Solution

The identity which connects $\cos 2\theta$ and $\cos \theta$ is

$$\cos 2\theta \equiv 2\cos^2 \theta - 1 \qquad (1)$$

$$x = 4 + \cos \theta \Rightarrow \cos \theta = x - 4 \qquad (2)$$

$$y = 2\cos 2\theta \Rightarrow \cos 2\theta = \frac{y}{2} \qquad (3)$$
Substitute (2) and (3) into (1)

$$\frac{y}{2} \equiv 2(x - 4)^2 - 1$$
Simplify
$$y \equiv 4(x - 4)^2 - 2$$

The parametric equation of a circle

A circle with radius r and centre (0, 0) has parametric equations:

 $x = r \cos \theta$ $y = r \sin \theta$ A circle with radius r and centre (a, b) has parametric equations:

> $x = a + r \cos \theta$ $y = b + r \sin \theta$

Example 6

(i) Find the cartesian equation of the curve given by the parametric equations

$$x = 2 + 3\cos\theta$$

$$y = 3\sin\theta - 1$$

 $\sin\theta = \frac{y+1}{3}$

(ii) Sketch the curve.

So

So

Solution

(i) The trig identity $\sin^2 \theta + \cos^2 \theta \equiv 1$ links $\sin \theta$ and $\cos \theta$. $\cos\theta = \frac{x-2}{3}$ (1) Make $\cos\theta$ the subject of $x = 2 + 3\cos\theta$:

Make $\sin \theta$ the subject of $y = 3\sin \theta - 1$:

Substitute ① and ② into $\sin^2 \theta + \cos^2 \theta = 1$:

$$\left(\frac{x-2}{3}\right)^2 + \left(\frac{y+1}{3}\right)^2 = 1$$
$$\frac{(x-2)^2}{9} + \frac{(y+1)^2}{9} = 1$$
$$(x-2)^2 + (y+1)^2 = 9$$

(ii) Need to sketch a circle of radius 3 and centre (2, -1)

Example 7

- (i) Write down the parametric equations of the curve $x^2 + y^2 = 16$
- (ii) Sketch the curve.

Solution

(i) This is a circle radius 4 and centre (0, 0) So the parametric equations are

 $x = 4\cos\theta$

 $y = 4\sin\theta$

(ii)

