Edexcel A level Maths Parametric equations

Section 1: Using parametric equations

Notes and Examples

These notes contain subsections on

- The definition of a parametric equation
- Sketching a parametric curve
- Finding the cartesian equation of a curve
- The parametric equation of a circle

The definition of a parametric equation

An equation like $y=5 x+1$ or $y=3 \sin x+4 \cos x$ or $x^{2}+y^{2}=1$ is called a cartesian equation. A cartesian equation gives a direct relationship between x and y.
In parametric equations x and y are both defined in terms of a third variable (parameter) usually t or θ.
For example $\begin{gathered}x=t \\ y=t^{2} \\ \text { and } \\ x=\cos \theta \\ y=\sin \theta\end{gathered} \quad$ are also a pair of parametric equations
Parametric equations can be used for a complicated curve which doesn't have a simple Cartesian equation.

Sketching a parametric curve

To sketch a curve given its parametric equations follow these steps.
Step 1 Make a table like this one:

t or θ		
x		
y		

Step 2 Choose values of t or θ (these will be usually be given to you)
Step 3 Work out the corresponding values of x and y using the parametric equations.
Step 4 Plot the (x, y) coordinates. Join them up in a smooth curve.

These examples shows you how to do this.

Example 1

A curve has the parametric equations $x=3 t, y=t^{2}$.
Sketch the curve for $-4 \leq t \leq 4$
Mathematics ${ }^{\text {® }}$
Education
Innovation

Edexcel A level Maths Parametric 1 Notes \& Examples

3

Solution

\boldsymbol{t}	-4	-3	-2	-1	0	1	2	3	4
\boldsymbol{x}	-12	-9	-6	-3	0	3	6	9	12
\boldsymbol{y}	16	9	4	1	0	1	4	9	16

Example 2

A curve has the parametric equations $x=1+2 \cos \theta, y=3+2 \sin \theta$.
Sketch the curve for $0^{\circ} \leq \theta \leq 360^{\circ}$

Solution

$\boldsymbol{\theta}$	0°	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°	360°
\boldsymbol{x}	3	2.73	2	1	0	-0.73	-1	-0.73	0	1	2	2.73	3
\boldsymbol{y}	3	4	4.73	5	4.73	4	3	2	1.27	1	1.27	2	3

Finding the cartesian equation of a curve
To find the cartesian equation of a curve from its parametric equations you need to eliminate the parameter t or θ.
It is not always possible to find the Cartesian equation of a curve defined parametrically.

Edexcel A level Maths Parametric 1 Notes \& Examples

There are essentially 3 methods which you will need to use depending on the parametric equations.

Method 1

Use this method when it is straightforward to make t the subject of one equation.

Step 1 Make t the subject of one of the parametric equations.
Step 2 Substitute your equation for t into the other parametric equation.
Step 3 Simplify.

Example 3

Find the cartesian equation of the curve defined by the parametric equations $x=3 t+2, y=1-t^{2}$

Solution

Step 1
Make t the subject of $x=3 t+2: \quad t=\frac{x-2}{3}$
Step 2
Substitute (1) into $y=1-t^{2}$:

$$
y=1-\left(\frac{x-2}{3}\right)^{2}
$$

Step 3
Simplify:
$y=1-\left(\frac{x-2}{3}\right)^{2}$
$y=1-\frac{(x-2)^{2}}{9}$

Sometimes it is easier to rearrange both equations to give an expression for t, as shown in the next example.

Example 4

Find the cartesian equation of the curve defined by the parametric equations
$x=\frac{t}{t+1}, y=\frac{t}{t-1}$.
Solution

$$
\begin{array}{rlrl}
x=\frac{t}{t+1} & \Rightarrow x(t+1)=t & y=\frac{t}{t-1} & \Rightarrow y(t-1)=t \\
& \Rightarrow t x+x=t & & \Rightarrow t y-y=t \\
& \Rightarrow t-t x=x & & \Rightarrow t y-t=y \\
& \Rightarrow t(1-x)=x & & \Rightarrow t(y-1)=y \\
& \Rightarrow t=\frac{x}{1-x} & & \Rightarrow t=\frac{y}{y-1}
\end{array}
$$

Edexcel A level Maths Parametric 1 Notes \& Examples

$$
\text { Equating the two expressions for } t: \begin{array}{ll}
& \frac{x}{1-x}=\frac{y}{y-1} \\
& x(y-1)=y(1-x) \\
& x y-x=y-x y \\
& 2 x y-y=x \\
& y(2 x-1)=x \\
& y=\frac{x}{2 x-1}
\end{array}
$$

Method 2

Use this method when it is not straightforward to make t the subject of one equation.

Step 1 Check whether adding/subtracting the two equations will result in a $3^{\text {rd }}$ equation in which t can easily be made the subject.
If not, look to rearrange the equations (e.g. squaring, cross multiplying) so this can be done.
Step 2 Then proceed as method 1.

Method 3

Use this method when you have trigonometric functions in the parametric equations.

Step 1 Find an identity which connects the two trigonometric functions.
Step 2 Rearrange the parametric equations so that you can substitute them into the trig identity.
Step 3 Simplify.

Example 5

Find the cartesian equation of the curve defined by the parametric equations $x=4+\cos \theta, \quad y=2 \cos 2 \theta$

Solution

The identity which connects $\cos 2 \theta$ and $\cos \theta$ is

$$
\begin{equation*}
\cos 2 \theta \equiv 2 \cos ^{2} \theta-1 \tag{1}
\end{equation*}
$$

$x=4+\cos \theta \Rightarrow \cos \theta=x-4$
$y=2 \cos 2 \theta \Rightarrow \cos 2 \theta=\frac{y}{2}$
Substitute (2) and (3) into (1)

$$
\frac{y}{2} \equiv 2(x-4)^{2}-1
$$

Simplify

$$
y \equiv 4(x-4)^{2}-2
$$

Edexcel A level Maths Parametric 1 Notes \& Examples
 The parametric equation of a circle

A circle with radius r and centre $(0,0)$ has parametric equations:

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

A circle with radius r and centre (a, b) has parametric equations:

$$
\begin{aligned}
& x=a+r \cos \theta \\
& y=b+r \sin \theta
\end{aligned}
$$

Example 6

(i) Find the cartesian equation of the curve given by the parametric equations

$$
\begin{aligned}
& x=2+3 \cos \theta \\
& y=3 \sin \theta-1
\end{aligned}
$$

(ii) Sketch the curve.

Solution

(i) The trig identity $\sin ^{2} \theta+\cos ^{2} \theta \equiv 1$ links $\sin \theta$ and $\cos \theta$.

Make $\cos \theta$ the subject of $x=2+3 \cos \theta: \quad \cos \theta=\frac{x-2}{3}$
Make $\sin \theta$ the subject of $y=3 \sin \theta-1: \quad \sin \theta=\frac{y+1}{3}$
Substitute (1) and (2) into $\sin ^{2} \theta+\cos ^{2} \theta \equiv 1$:

$$
\left(\frac{x-2}{3}\right)^{2}+\left(\frac{y+1}{3}\right)^{2}=1
$$

So

$$
\frac{(x-2)^{2}}{9}+\frac{(y+1)^{2}}{9}=1
$$

So

$$
(x-2)^{2}+(y+1)^{2}=9
$$

(ii) Need to sketch a circle of radius 3 and centre (2, -1)

Edexcel A level Maths Parametric 1 Notes \& Examples

Example 7

(i) Write down the parametric equations of the curve $x^{2}+y^{2}=16$
(ii) Sketch the curve.

Solution

(i) This is a circle radius 4 and centre $(0,0)$

So the parametric equations are

$$
\begin{aligned}
& x=4 \cos \theta \\
& y=4 \sin \theta
\end{aligned}
$$

(ii)

