Edexcel A level Maths Trigonometric identities

Section 2: Further trigonometric equations

Notes and Examples

In this section you learn to convert expressions in the form $a \sin \theta+b \cos \theta$ to the form $r \cos (\theta \pm \alpha)$ or $r \sin (\theta \pm \alpha)$. This is a useful skill as it enables you to solve equations and sketch curves that you previously wouldn't have been able to.

These notes contain subsections on

- The forms $r \cos (\theta \pm \alpha)$ and $r \sin (\theta \pm \alpha)$
- Solving equations

The forms $r \cos (\theta \pm \alpha)$ and $r \sin (\theta \pm \alpha)$

Try using graphing software or a graphical calculator to sketch graphs of the form $y=a \sin \theta+b \cos \theta$, with various values of a and b.

You should find that all the graphs of this form are the same shape as a sine or cosine graph, but translated by various amounts in the x direction, and stretched by various amounts in the y direction.

This suggests that any expression of the form $a \sin \theta+b \cos \theta$ may be written in the form $r \sin (\theta \pm \alpha)$ or $r \cos (\theta \pm \alpha)$ for particular values of r and α.

The compound angle formulae can be used to do this. The results can be summarised as follows:

$$
\left.\begin{array}{l}
a \sin \theta+b \cos \theta=r \sin (\theta+\alpha) \\
a \sin \theta-b \cos \theta=r \sin (\theta-\alpha) \\
a \cos \theta+b \sin \theta=r \cos (\theta-\alpha) \\
a \cos \theta-b \sin \theta=r \cos (\theta+\alpha)
\end{array}\right\} \text { where } r=\sqrt{a^{2}+b^{2}}, \cos \alpha=\frac{a}{r} \text { and } \sin \alpha=\frac{b}{r}
$$

However, it is best not to try to learn and apply the formula above as it is easy to get muddled. A better approach is to use the compound angle formulae and then compare coefficients, as shown in Example 1.

Example 1

(i) Find the positive value of r and the acute angle α for which

$$
3 \sin x+4 \cos x=r \sin (x+\alpha)
$$

(ii) Sketch the curve with the equation $y=3 \sin x+4 \cos x$.

Edexcel A level Trig identities 2 Notes \& Examples

Solution

(i) $3 \sin x+4 \cos x=r \sin (x+\alpha)$

$$
\begin{aligned}
& =r(\sin x \cos \alpha+\cos x \sin \alpha) \\
& =r \sin x \cos \alpha+r \cos x \sin \alpha
\end{aligned}
$$

$3 \sin x+4 \cos x=r \sin x \cos \alpha+r \cos x \sin \alpha$

$\Rightarrow r \cos \alpha=3$ and $r \sin \alpha=4$
$\Rightarrow \quad \cos \alpha=\frac{3}{r}$ and $\sin \alpha=\frac{4}{r}$

$$
0
$$

$$
0
$$

So: $\quad 3 \sin x+4 \cos x=5 \sin \left(x+53.1^{\circ}\right)$
(ii) $y=3 \sin x+4 \cos x \Rightarrow y=5 \sin \left(x+53.1^{\circ}\right)$

The minimum value that $5 \sin \left(x+53.1^{\circ}\right)$ has is -5 .

The maximum value that $5 \sin \left(x+53.1^{\circ}\right)$ has is 5 .

The graph of $y=5 \sin \left(x+53.1^{\circ}\right)$ is a translation of the graph $y=\sin x$ by the vector $\binom{-53.1}{0}$ and a one-way stretch parallel to the y axis scale factor 5 .

Solving equations

The next example shows how this form can be used to solve equations of the form $a \cos \theta+b \sin \theta=c$.

Edexcel A level Trig identities 2 Notes \& Examples

Example 2

Solve the equation $3 \sin x+4 \cos x=3$ for $0^{\circ} \leq x \leq 360^{\circ}$

Solution

From Example 1, you can write $3 \sin x+4 \cos x$ as $y=5 \sin \left(x+53.1^{\circ}\right)$
$3 \sin x+4 \cos x=3 \Rightarrow 5 \sin (x+53.1)=3$
$\Rightarrow \sin (x+53.1)=0.6$
$\Rightarrow x+53.1=36.9^{\circ}$ or 143.1°
$\Rightarrow x=-16.3^{\circ}$ or 90°
$x=-16.3^{\circ}$ is outside the range, so add 360° to give a solution of $x=343.7^{\circ}$
The solutions are $x=90^{\circ}$ or 343.7 to 1 d.p.

