

Section 2: Further trigonometric equations

Notes and Examples

In this section you learn to convert expressions in the form $a\sin\theta + b\cos\theta$ to the form $r\cos(\theta \pm \alpha)$ or $r\sin(\theta \pm \alpha)$. This is a useful skill as it enables you to solve equations and sketch curves that you previously wouldn't have been able to.

These notes contain subsections on

- The forms $r \cos(\theta \pm \alpha)$ and $r \sin(\theta \pm \alpha)$
- Solving equations

The forms $r \cos(\theta \pm \alpha)$ and $r \sin(\theta \pm \alpha)$

Try using graphing software or a graphical calculator to sketch graphs of the form $y = a \sin \theta + b \cos \theta$, with various values of *a* and *b*.

You should find that all the graphs of this form are the same shape as a sine or cosine graph, but translated by various amounts in the x direction, and stretched by various amounts in the y direction.

This suggests that any expression of the form $a\sin\theta + b\cos\theta$ may be written in the form $r\sin(\theta \pm \alpha)$ or $r\cos(\theta \pm \alpha)$ for particular values of *r* and α .

The compound angle formulae can be used to do this. The results can be summarised as follows:

 $a\sin\theta + b\cos\theta = r\sin(\theta + a)$ $a\sin\theta - b\cos\theta = r\sin(\theta - a)$ $a\cos\theta + b\sin\theta = r\cos(\theta - a)$ $a\cos\theta - b\sin\theta = r\cos(\theta + a)$ where $r = \sqrt{a^2 + b^2}$, $\cos\alpha = \frac{a}{r}$ and $\sin\alpha = \frac{b}{r}$

However, it is best not to try to learn and apply the formula above as it is easy to get muddled. A better approach is to use the compound angle formulae and then compare coefficients, as shown in Example 1.

Example 1

(i) Find the positive value of *r* and the acute angle α for which $3\sin x + 4\cos x = r\sin(x+\alpha)$

(ii) Sketch the curve with the equation $y = 3\sin x + 4\cos x$.

Edexcel A level Trig identities 2 Notes & Examples

Solving equations

The next example shows how this form can be used to solve equations of the form $a\cos\theta + b\sin\theta = c$.

Edexcel A level Trig identities 2 Notes & Examples

Example 2

Solve the equation $3\sin x + 4\cos x = 3$ for $0^\circ \le x \le 360^\circ$

Solution

From Example 1, you can write $3\sin x + 4\cos x$ as $y = 5\sin(x+53.1^\circ)$

 $x = -16.3^{\circ}$ is outside the range, so add 360° to give a solution of $x = 343.7^{\circ}$

The solutions are $x = 90^{\circ}$ or 343.7 to 1 d.p.