Edexcel A level Maths Trigonometric identities

Section 1: The compound angle identities

Notes and Examples

These notes contain subsections on

- The compound angle formulae
- The double angle formulae

The compound angle formulae

Some useful identities are the compound angle formulae:

Example 1

Write cos 75° as a surd.

Solution

 $\cos 75^\circ = \cos(45^\circ + 30^\circ)$

Using the compound-angle formula $\cos(A + B) = \cos A \cos B - \sin A \sin B$ we have: $\cos(45^\circ + 30^\circ) = \cos 45^\circ \cos 30^\circ - \sin 45^\circ \sin 30^\circ$

S.

Example 2 Solve $\sin(60^\circ - \theta) = \cos\theta$ for $0^\circ \le \theta \le 360^\circ$

Mathematics® Education Innovation

Edexcel A level Trig identities 1 Notes & Examples

The double angle formulae

In the case where A = B, the compound angle formulae become the double angle formulae.

Example 3

Use the double angle identities to show that $\frac{\sin 2\theta}{\cos 2\theta} \equiv \tan 2\theta$.

Solution

2 of 3 integralmaths.org

Edexcel A level Trig identities 1 Notes & Examples

In this example you need to use a double-angle formula to solve an equation giving your answer in radians.

