Edexcel A level Mathematics Trigonometry

Section 2: Circular measure

Notes and Examples

In this section you learn about radians and circular measure.
These notes contain subsections on:

- Sectors of circles

- Small angle approximations

Sectors of circles

- A sector of a circle is the shape enclosed by an arc of the circle and two radii.
A minor sector is a sector which is smaller than a semi-circle.
A major sector is a sector which is larger than a semi-circle.

A sector with angle θ is a fraction of the circle: since the whole circle has angle 2π, the sector is $\frac{\theta}{2 \pi}$ of the whole circle.

- The circumference of a circle is $2 \pi r$. The length of the arc of a sector with angle θ is $\frac{\theta}{2 \pi}$ of the circumference, so the arc length is

$$
\frac{\theta}{2 \pi} \times 2 \pi r=r \theta
$$

$$
\text { Arc length }=r \theta \quad \text { where } \theta \text { is in radians. }
$$

- The area of a circle is πr^{2}. The area of a sector with angle θ is $\frac{\theta}{2 \pi}$ of the area, so the area of the sector is $\frac{\theta}{2 \pi} \times \pi r^{2}=\frac{1}{2} r^{2} \theta$.:

$$
\text { Area of a sector }=\frac{1}{2} r^{2} \theta \text { where } \theta \text { is in radians. }
$$

In this example you need to use the formula for arc length.

Example 1

A sector of a circle with radius 6 cm has an arc length of 2π.
Find the angle subtended at the centre of the circle.

Edexcel A level Maths Trig 2 Notes \& Examples

Solution

Use arc length $=r \theta$.
So $2 \pi=6 \theta$
So $\theta=\frac{2 \pi}{6}=\frac{\pi}{3}$

In the next example you need to use the formula for sector area.

Example 2

Find the shaded area.

Solution

Convert 120° to radians: $\quad 120^{\circ}=120^{\circ} \times \frac{\pi}{180^{\circ}}=\frac{2 \pi}{3}$
Area of segment $=$ Area of sector $\mathrm{OAB}-$ area of triangle OAB Area of sector $=\frac{1}{2} r^{2} \theta$ where θ is in radians.
Area of triangle $=\frac{1}{2} r^{2} \sin \theta \quad 0$

So area of segment $=\frac{1}{2} r^{2} \theta-\frac{1}{2} r^{2} \sin \theta$

$$
=\frac{1}{2} r^{2}(\theta-\sin \theta)
$$

Area of segment $=\frac{1}{2} \times 5^{2}\left(\frac{2 \pi}{3}-\sin \frac{2 \pi}{3}\right)=15.4 \mathrm{~cm}^{2}$

Small angle approximations

Using radians, the trigonometric functions can be approximated by polynomial functions. If the angle is small, good approximations are given by

$$
\begin{aligned}
& \sin x \approx x \\
& \cos x \approx 1-\frac{1}{2} x^{2} \\
& \tan x \approx x
\end{aligned}
$$

Edexcel A level Maths Trig 2 Notes \& Examples

You can use a spreadsheet or graphing software to see how good these approximations are for small angles.

Example 3
(i) Use small angle approximations to find an expression for

$$
\sin 3 x+\cos 2 x+\tan ^{2} x
$$

(ii) Hence find an approximate value for the smallest positive root of the equation $\sin 3 x+\cos 2 x+\tan ^{2} x=1.5$

Solution

(i) $\sin 3 x+\cos 2 x+\tan ^{2} x \approx 3 x+1-\frac{1}{2}(2 x)^{2}+x^{2}$

$$
\begin{aligned}
& =3 x+1-2 x^{2}+x^{2} \\
& =3 x+1-x^{2}
\end{aligned}
$$

(ii) $\sin 3 x+\cos 2 x+\tan ^{2} x=1.5$

$$
\begin{aligned}
& 3 x+1-x^{2}=1.5 \\
& 2 x^{2}-6 x+1=0 \\
& x=\frac{6 \pm \sqrt{36-4 \times 2 \times 1}}{4}=\frac{6 \pm \sqrt{28}}{4}=\frac{3 \pm \sqrt{7}}{2}
\end{aligned}
$$

The smallest positive root is approximately 0.18 .

In the example above, notice that using the small angle approximations give a quadratic equation with two roots. The smaller root, 0.18 , is a good approximation to a root of the original equation (try substituting it into the original trig equation - make sure your calculator is in radians!) However, the larger root of the quadratic (2.82) is not such a good approximation, and there are other roots as well (positive and negative) which cannot be approximated by this method. Use graphing software to look at the equation of the curve $y=\sin 3 x+\cos 2 x+\tan ^{2} x$, and compare with the quadratic $y=3 x+1-x^{2}$.

