Edexcel A level Mathematics Vectors

Topic assessment

1. The points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D have coordinates $(2,1,3),(4,1,5),(2,5, p)$ and $(q, r, 1)$ respectively. If $\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{CD}}$ what are the values of p, q and r ?
2. Points A and B have coordinates $(2,1,1)$ and $(20,-5,13)$ respectively.

If point C is such that $2 \overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{CB}}$, what are the coordinates of C ?
3. The point P has coordinates $(-2,4,0)$.

The point Q is such that $\overrightarrow{\mathrm{PQ}}=\left(\begin{array}{c}3 \\ -2 \\ 1\end{array}\right)$.
The point R has coordinates $(-1,1, r)$.
For which value of r is PQR an equilateral triangle?
4. Point A has coordinates $(2,3,6)$. Point B has coordinates $(8,6,8)$. Find the point C so that $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ are in the same direction and $|\mathrm{AC}|=77$.
5. Forces $\mathbf{F}_{1}=\lambda(3 \mathbf{i}-2 \mathbf{j}+\mathbf{k}) \mathrm{N}$ and $\mathbf{F}_{2}=\mu(\mathbf{i}+\mathbf{j}+3 \mathbf{k}) \mathrm{N}$, where λ and μ are scalars, act on a box.
Prove that it is not possible for their resultant force to act in the direction of \mathbf{k}.

Total 25 marks

Edexcel A level Maths Vectors Assessment solutions

Solutions to topic assessment

1. $\overrightarrow{A B}=\left(\begin{array}{l}4 \\ 1 \\ 5\end{array}\right)-\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right)=\left(\begin{array}{l}2 \\ 0 \\ 2\end{array}\right)$
$\overrightarrow{C D}=\left(\begin{array}{l}q \\ r \\ 1\end{array}\right)-\left(\begin{array}{l}2 \\ 5 \\ p\end{array}\right)=\left(\begin{array}{c}q-2 \\ r-5 \\ 1-p\end{array}\right)$
$\left(\begin{array}{c}q-2 \\ r-5 \\ 1-p\end{array}\right)=\left(\begin{array}{l}2 \\ 0 \\ 2\end{array}\right)$
$p=-1, q=4, r=5$
2. Let c have position vector $\left(\begin{array}{l}p \\ q \\ r\end{array}\right)$
$\overrightarrow{A C}=\left(\begin{array}{l}p \\ q \\ r\end{array}\right)-\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{l}p-2 \\ q-1 \\ r-1\end{array}\right)$
$\overrightarrow{C B}=\left(\begin{array}{c}20 \\ -5 \\ 13\end{array}\right)-\left(\begin{array}{l}p \\ q \\ r\end{array}\right)=\left(\begin{array}{c}20-p \\ -5-q \\ 13-r\end{array}\right)$
$2 \overrightarrow{A C}=\overrightarrow{C B}$
$2\left(\begin{array}{l}p-2 \\ q-1 \\ r-1\end{array}\right)=\left(\begin{array}{l}20-p \\ -5-q \\ 13-r\end{array}\right)$
$2(p-2)=20-p \quad \Rightarrow 3 p=24 \Rightarrow p=8$
$2(q-1)=-5-q \Rightarrow 3 q=-3 \Rightarrow q=-1$
$2(r-1)=13-r \Rightarrow 3 r=15 \Rightarrow r=5$
The coordinates of c are $(8,-1,5)$

Edexcel A level Maths Vectors Assessment solutions

3. $\overrightarrow{O Q}=\overrightarrow{O P}+\overrightarrow{P Q}=\left(\begin{array}{c}-2 \\ 4 \\ 0\end{array}\right)+\left(\begin{array}{c}3 \\ -2 \\ 1\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$
$\overrightarrow{P R}=\left(\begin{array}{c}-1 \\ 1 \\ r\end{array}\right)-\left(\begin{array}{c}-2 \\ 4 \\ 0\end{array}\right)=\left(\begin{array}{c}1 \\ -3 \\ r\end{array}\right)$
$\overrightarrow{Q R}=\left(\begin{array}{c}-1 \\ 1 \\ r\end{array}\right)-\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)=\left(\begin{array}{c}-2 \\ -1 \\ r-1\end{array}\right)$
$|\overrightarrow{P Q}|^{2}=3^{2}+(-2)^{2}+1^{2}=14$
$|\overrightarrow{P R}|^{2}=1^{2}+(-3)^{2}+r^{2}=10+r^{2}$
$|\overrightarrow{Q R}|^{2}=(-2)^{2}+(-1)^{2}+(r-1)^{2}=r^{2}-2 r+6$
$|\overrightarrow{P Q}|^{2}=|\overrightarrow{P R}|^{2} \Rightarrow 10+r^{2}=14 \quad \Rightarrow r^{2}=4 \quad \Rightarrow r= \pm 2$
$|\overrightarrow{P R}|^{2}=|\overrightarrow{Q R}|^{2} \Rightarrow 10+r^{2}=r^{2}-2 r+6 \quad \Rightarrow 2 r=-4 \quad \Rightarrow r=-2$
SO $P Q R$ is an equilateral triangle for $r=-2$
4. $\overrightarrow{A B}=\left(\begin{array}{l}8 \\ 6 \\ 8\end{array}\right)-\left(\begin{array}{l}2 \\ 3 \\ 6\end{array}\right)=\left(\begin{array}{l}6 \\ 3 \\ 2\end{array}\right)$
$\overrightarrow{A B}$ and $\overrightarrow{A C}$ are in the same direction $\Rightarrow \overrightarrow{A C}=k\left(\begin{array}{l}6 \\ 3 \\ 2\end{array}\right)$ where k is positive

$$
\begin{aligned}
|\overrightarrow{A C}|=77 & \Rightarrow k^{2}\left(6^{2}+3^{2}+2^{2}\right)=77^{2} \\
& \Rightarrow 49 k^{2}=77^{2} \\
& \Rightarrow k^{2}=121 \\
& \Rightarrow k= \pm 11
\end{aligned}
$$

k must be positive for same direction, so $k=11$

$$
\overrightarrow{O C}=\overrightarrow{O A}+\overrightarrow{A C}=\left(\begin{array}{l}
2 \\
3 \\
6
\end{array}\right)+11\left(\begin{array}{l}
6 \\
3 \\
2
\end{array}\right)=\left(\begin{array}{l}
68 \\
36 \\
28
\end{array}\right)
$$

So C is $(68,36,28)$

Edexcel A level Maths Vectors Assessment solutions

5. Resultant force is $\lambda\left(\begin{array}{c}3 \\ -2 \\ 1\end{array}\right)+\mu\left(\begin{array}{l}1 \\ 1 \\ 3\end{array}\right)=\left(\begin{array}{c}3 \lambda+\mu \\ -2 \lambda+\mu \\ \lambda+3 \mu\end{array}\right)$

If resultant force is in the direction of $\underline{\underline{k}}$, it must be $\left(\begin{array}{l}0 \\ 0 \\ p\end{array}\right)$ for some $p \neq 0$
$3 \lambda+\mu=0 \Rightarrow \mu=-3 \lambda$
$-2 \lambda+\mu=0 \quad \Rightarrow \mu=2 \lambda$
$-3 \lambda=2 \lambda \Rightarrow \lambda=0 \Rightarrow \mu=0$
$p=\lambda+3 \mu=0$ so $p=0$ which contradicts the assumption that $p \neq 0$ so it is not possible for the resultant force to be in the direction of k.

