## Edexcel A level Mathematics Trigonometry

## Topic assessment

1. A belt is wrapped around a cylinder of radius 2.5 m as shown.


Find the length of the belt.
2. Find the perimeter and area of the shaded sections of these shapes.
(i)

(ii)

3. (i) Sketch the graph of $y=\cos x$ for $-\pi \leq x \leq \pi$,
(ii) Sketch the line $y=3 x$ on the same axes, and indicate the point where the graphs intersect.
(iii)Use small angle approximations to find an approximate value for the $x$-coordinate of the intersection point.
4. Solve these equations for $0 \leq \theta \leq 2 \pi$.

Give your answers as a multiple of $\pi$.
(i) $\cos \theta=\frac{\sqrt{3}}{2}$
(ii) $\sin \theta=0.5$
(iii) $\tan \theta=\sqrt{3}$

## Edexcel A level Maths Trig Assessment solns

5. Solve these equations for $0 \leq \theta \leq 2 \pi$.

Give your answers as a multiple of $\pi$.
(i) $\cos ^{2} \theta=\frac{3}{4}$
(ii) $3 \tan ^{2} \theta=1$

## Edexcel A level Maths Trig Assessment solns

## Topic Assessment solutions

1. $\cos \theta=\frac{\text { Adjacent }}{\text { Hypotenuse }}=\frac{2.5}{5}=\frac{1}{2}$ $\theta=60^{\circ}$


Angle of arc with belt on $=360^{\circ}-60^{\circ}-60^{\circ}=240^{\circ}$
$240^{\circ}=240 \times \frac{\pi}{180}=\frac{4 \pi}{3}$
Arc length $=r \theta=2.5\left(\frac{4 \pi}{3}\right)=\frac{10 \pi}{3}$
$\tan \theta=\frac{x}{2.5}$
$x=2.5 \tan 60^{\circ}$

Total length of belt $=\frac{10 \pi}{3}+2 x$

$$
\begin{aligned}
& =\frac{10 \pi}{3}+5 \tan 60^{\circ} \\
& =19.1 \mathrm{~m}(3 \mathrm{s.f.})
\end{aligned}
$$

2. (i) If the triangle has an angle of $60^{\circ}$ at the centre of the circle then it must be an equilateral triangle and so part of the perimeter is 3 cm .
$60^{\circ}=60 \times \frac{\pi}{180}=\frac{\pi}{3}$
Arc length $=r \theta=3\left(\frac{\pi}{3}\right)=\pi$
Perímeter $=(\pi+3) \mathrm{cm}$

$$
=6.14 \mathrm{~cm} \text { (3 s.f.) }
$$

Area of sector $=\frac{1}{2} r^{2} \theta=0.5 \times 3^{2} \times \frac{\pi}{3}=\frac{3 \pi}{2}$
Area $=$ Area of sector - Area of triangle
$=\frac{3 \pi}{2}-\frac{1}{2} \times 3 \times 3 \sin 60^{\circ}$
$=0.815 \mathrm{~cm}^{2}$ (3 s.f.)
[7]
(ii) Arc length $=r \theta$

Sector area $=\frac{1}{2} r^{2} \theta$
$45^{\circ}=45 \times \frac{\pi}{180}=\frac{\pi}{4}$

## Edexcel A level Maths Trig Assessment solns

Sector 1: $\quad$ Arclength $=10 \times \frac{\pi}{4}=\frac{5 \pi}{2}$

$$
\text { sector area }=\frac{1}{2} \times 10^{2} \times \frac{\pi}{4}=\frac{25 \pi}{2}
$$

sector 2: $\quad$ Arc length $=8 \times \frac{\pi}{4}=2 \pi$

$$
\text { sector area }=\frac{1}{2} \times 8^{2} \times \frac{\pi}{4}=8 \pi
$$

Shaded area: Perimeter $=2+2+$ Arc length $1+$ Arc length 2

$$
\begin{aligned}
& =4+\frac{5 \pi}{2}+2 \pi \\
& =18.1 \mathrm{~cm}(3 \mathrm{s.f.}) \\
\text { Area }= & \text { Area of sector } 1-\text { Area of sector } 2 \\
= & \frac{25 \pi}{2}-8 \pi \\
= & 14.1 \mathrm{~cm}^{2}(3 \mathrm{s.f.})
\end{aligned}
$$

3. (i), (ii)

(iii) $\cos x=3 x$
$1-\frac{1}{2} x^{2} \approx 3 x$
$x^{2}+6 x-2=0$
$x=\frac{-6 \pm \sqrt{36-4 \times 1 \times-2}}{2}=\frac{-6 \pm \sqrt{44}}{2}=-3 \pm \sqrt{11}$
The roots of the quadratic equation are 0.317 and -6.32
The root -6.32 arises because the cosine graph is being approximated by a quadratic, and the line would cut this quadratic twice.
The required root is the positive on, and it is approximately 0.317.

## Edexcel A level Maths Trig Assessment solns

4. (i) $\cos \theta=\frac{\sqrt{3}}{2}$

Solutions are in $1^{\text {st }}$ and $4^{\text {th }}$ quadrants.
$\theta=\frac{\pi}{6}$ or $\theta=2 \pi-\frac{\pi}{6}=\frac{11 \pi}{6}$
$\theta=\frac{\pi}{6}, \frac{11 \pi}{6}$
(ii) $\sin \theta=0.5$
solutions are in $1^{\text {st }}$ and $2^{\text {nd }}$ quadrants
$\theta=\frac{\pi}{6}$ or $\theta=\pi-\frac{\pi}{6}=\frac{5 \pi}{6}$
$\theta=\frac{\pi}{6}, \frac{5 \pi}{6}$
(iiii) $\tan \theta=\sqrt{3}$
Solutions are in $1^{\text {st }}$ and $3^{\text {rd }}$ quadrants
$\theta=\frac{\pi}{3}$ or $\theta=\pi+\frac{\pi}{3}=\frac{4 \pi}{3}$
$\theta=\frac{\pi}{3}, \frac{4 \pi}{3}$
5. (i) $\cos ^{2} \theta=\frac{3}{4}$
$\cos \theta= \pm \frac{\sqrt{3}}{2}$
$\cos \theta=\frac{\sqrt{3}}{2}$ has solutions in the $1^{\text {st }}$ and $4^{\text {th }}$ quadrants

$$
\theta=\frac{\pi}{6} \text { or } \theta=2 \pi-\frac{\pi}{6}=\frac{11 \pi}{6}
$$

$\cos \theta=-\frac{\sqrt{3}}{2}$ has solutions in the $2^{\text {nd }}$ and $4^{\text {th }}$ quadrants

$$
\theta=\pi-\frac{\pi}{6}=\frac{5 \pi}{6} \text { or } \theta=\pi+\frac{\pi}{6}=\frac{7 \pi}{6}
$$

$\theta=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
(ii) $3 \tan ^{2} \theta=1$
$\tan ^{2} \theta=\frac{1}{3}$
$\tan \theta= \pm \frac{1}{\sqrt{3}}$

## Edexcel A level Maths Trig Assessment solns

$\tan \theta=\frac{1}{\sqrt{3}}$ has solutions in the $1^{\text {st }}$ and $3^{\text {rd }}$ quadrants

$$
\theta=\frac{\pi}{6} \text { or } \theta=\pi+\frac{\pi}{6}=\frac{7 \pi}{6}
$$

$\tan \theta=-\frac{1}{\sqrt{3}}$ has solutions in the $2^{\text {nd }}$ and $4^{\text {th }}$ quadrants

$$
\begin{aligned}
& \theta=\pi-\frac{\pi}{6}=\frac{5 \pi}{6} \text { or } \theta=2 \pi-\frac{\pi}{6}=\frac{11 \pi}{6} \\
& \theta=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}
\end{aligned}
$$

