Edexcel A level Mathematics Trigonometry

Topic assessment

1. A belt is wrapped around a cylinder of radius 2.5 m as shown.

Find the length of the belt.

[6]

2. Find the perimeter and area of the shaded sections of these shapes.

[7]

- 3. (i) Sketch the graph of y = cos x for -π ≤ x ≤ π , [2]
 (ii) Sketch the line y = 3x on the same axes, and indicate the point where the
 - graphs intersect. [1] (iii)Use small angle approximations to find an approximate value for the *x*-coordinate of the intersection point. [5]
- 4. Solve these equations for $0 \le \theta \le 2\pi$. Give your answers as a multiple of π .

(i)
$$\cos\theta = \frac{\sqrt{3}}{2}$$
 [2]

(ii)
$$\sin\theta = 0.5$$
 [2]

(iii) $\tan \theta = \sqrt{3}$ [2]

5. Solve these equations for $0 \le \theta \le 2\pi$. Give your answers as a multiple of π .

(i)	$\cos^2\theta = \frac{3}{4}$	[3]
(ii)	$3\tan^2\theta = 1$	[3]

Total 40 marks

Topic Assessment solutions

1.
$$\cos \theta = \frac{Adjacent}{Hypotenuse} = \frac{2.5}{5} = \frac{1}{2}$$

 $\theta = 60^{\circ}$
Angle of arc with belt on = $360^{\circ} - 60^{\circ} - 60^{\circ} = 240^{\circ}$
 $240^{\circ} = 240 \times \frac{\pi}{180} = \frac{4\pi}{3}$
Arc length = $r\theta = 2.5\left(\frac{4\pi}{3}\right) = \frac{10\pi}{3}$
 $\tan \theta = \frac{x}{2.5}$
 $x = 2.5 \tan 60^{\circ}$
Total length of belt = $\frac{10\pi}{3} + 2x$
 $= \frac{10\pi}{3} + 5 \tan 60^{\circ}$
 $= 19.1 m(3 \text{ s.f.})$
[6]

2. (i) If the triangle has an angle of 60° at the centre of the circle then it must be an equilateral triangle and so part of the perimeter is 3cm.

$$60^{\circ} = 60 \times \frac{\pi}{180} = \frac{\pi}{3}$$

Arc length = $r\theta = 3\left(\frac{\pi}{3}\right) = \pi$
Perimeter = $(\pi + 3)$ cm
= 6.14 cm (3 s.f.)

Area of sector $=\frac{1}{2}r^{2}\theta = 0.5 \times 3^{2} \times \frac{\pi}{3} = \frac{3\pi}{2}$ Area = Area of sector - Area of triangle $=\frac{3\pi}{2} - \frac{1}{2} \times 3 \times 3 \sin 60^{\circ}$ $= 0.815 \text{ cm}^{2}(3 \text{ s.f.})$

(ii) Arc length =
$$r\theta$$

Sector area = $\frac{1}{2}r^2\theta$
 $45^\circ = 45 \times \frac{\pi}{180} = \frac{\pi}{4}$

[7]

Sector 1: Arc length =
$$10 \times \frac{\pi}{4} = \frac{5\pi}{2}$$

Sector area = $\frac{1}{2} \times 10^2 \times \frac{\pi}{4} = \frac{25\pi}{2}$

Sector 2: Arc length
$$= 8 \times \frac{\pi}{4} = 2\pi$$

Sector area $= \frac{1}{2} \times 8^2 \times \frac{\pi}{4} = 8\pi$

Shaded area: Perímeter = 2 + 2 + Arc length 1 + Arc length 2

$$= 4 + \frac{5\pi}{2} + 2\pi$$

= 18.1 cm (3 s.f.)
Area = Area of sector 1 - Area of sector 2
$$= \frac{25\pi}{2} - 8\pi$$

= 14.1 cm²(3 s.f.)

[7]

(iii) $\cos x = 3x$

$$1 - \frac{1}{2} X^{2} \approx 3X$$

$$x^{2} + 6X - 2 = 0$$

$$x = \frac{-6 \pm \sqrt{36 - 4 \times 1 \times -2}}{2} = \frac{-6 \pm \sqrt{44}}{2} = -3 \pm \sqrt{11}$$

The roots of the quadratic equation are 0.317 and -6.32The root -6.32 arises because the cosine graph is being approximated by a quadratic, and the line would cut this quadratic twice. The required root is the positive on, and it is approximately 0.317.

4. (i)
$$\cos \theta = \frac{\sqrt{3}}{2}$$

Solutions are in 1st and 4th quadrants.
 $\theta = \frac{\pi}{6} \text{ or } \theta = 2\pi - \frac{\pi}{6} = \frac{11\pi}{6}$
 $\theta = \frac{\pi}{6}, \frac{11\pi}{6}$
[2]
(ii) $\sin \theta = 0.5$

Solutions are in 1st and 2nd quadrants $\theta = \frac{\pi}{6} \text{ or } \theta = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$ $\theta = \frac{\pi}{6}, \frac{5\pi}{6}$

$$\theta = \frac{\pi}{6}, \frac{3\pi}{6}$$
[2]

(iii)
$$\tan \theta = \sqrt{3}$$

Solutions are in 1st and 3rd quadrants
 $\theta = \frac{\pi}{3}$ or $\theta = \pi + \frac{\pi}{3} = \frac{4\pi}{3}$
 $\theta = \frac{\pi}{3}, \frac{4\pi}{3}$

[2]	
Tr T	

5. (i)
$$\cos^2 \theta = \frac{3}{4}$$

 $\cos \theta = \pm \frac{\sqrt{3}}{2}$
 $\cos \theta = \frac{\sqrt{3}}{2}$ has solutions in the 1st and 4th quadrants
 $\theta = \frac{\pi}{6}$ or $\theta = 2\pi - \frac{\pi}{6} = \frac{11\pi}{6}$
 $\cos \theta = -\frac{\sqrt{3}}{2}$ has solutions in the 2nd and 4th quadrants
 $\theta = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$ or $\theta = \pi + \frac{\pi}{6} = \frac{7\pi}{6}$
 $\theta = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$
[3]
(ii) $3\tan^2 \theta = 1$

$$\tan^2 \theta = \frac{1}{3}$$
$$\tan \theta = \pm \frac{1}{\sqrt{3}}$$

1

$$\tan \theta = \frac{1}{\sqrt{3}} \text{ has solutions in the 1st and 3rd quadrants}$$
$$\theta = \frac{\pi}{6} \text{ or } \theta = \pi + \frac{\pi}{6} = \frac{7\pi}{6}$$
$$\tan \theta = -\frac{1}{\sqrt{3}} \text{ has solutions in the 2rd and 4th quadrants}$$
$$\theta = \pi - \frac{\pi}{6} = \frac{5\pi}{6} \text{ or } \theta = 2\pi - \frac{\pi}{6} = \frac{11\pi}{6}$$
$$\theta = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$$

[3]