Edexcel A level Maths Sequences and series

Topic assessment

1.	An arithmetic series has first term 3 and common difference 5. Find	
	(i) the 4^{th} term	[2]
	(ii) the sum of the first 12 terms.	[3]
2.	The 5 th term of an arithmetic series is 16 and the 10^{th} term is 30.	
	(i) Find the first term and the common difference.	[4]
	(ii) How many terms of the series are needed for the sum of the series to exce	ed
	1000?	[4]
3.	A geometric series has first term 2 and common ratio 0.2. Find	
	(i) the 3^{rd} term	[2]
	(ii) the sum of the first 4 terms of the series	[3]
	(iii) the sum to infinity of the series.	[2]
4	A geometric series has 1^{st} term 3 and sum to infinity 8	
	Find the common ratio.	[4]
5.	A geometric series has first term 54 and 4 th term 2.	
	(i) What is the common ratio?	[3]
	(ii) Find the sum to infinity of the series.	[2]
	(iii) After how many terms is the sum of the series greater than 99% of the sum $\frac{1}{2}$	m to
	infinity?	[5]
6.	When Mirka is 5 years old, her parents start to give her pocket money of 50p p	er
	week. On her birthday each year, her parents increase her pocket money by 50	p.
	(i) How much pocket money does Mirka get in the first year?	[2]
	(ii) How much more money in total does Mirka get in the second year than the	ie
	first year?	[3]
	(iii) How much money has Mirka been given in total by her 11 th birthday?	[3]
	(iv) After now many complete years is the total amount Mirka has been given more than f_{10002}	Г/Л
		[4]
7.	At the beginning of each month, Mark puts $\pounds N$ from his salary into a savings	
	account. At the end of every month, interest is added to his savings at the rate of	of
	<i>r</i> % per month.	.1
	(1) Write down an expression for the amount of money in Mark's account at end of (a) 1 month (b) 2 months (c) 3 months	the
	and hence show that the amount of money in Mark's account at the end of	f n
	months is given by	
	λ^2 λ^2 λ^3 λ^2	503

$$N\left(1+\frac{r}{100}\right) + N\left(1+\frac{r}{100}\right)^2 + N\left(1+\frac{r}{100}\right)^3 + \dots + N\left(1+\frac{r}{100}\right)^n$$
[8]

- (ii) Use the formula for a geometric progression to simplify this expression. [3]
- (iii) How much does Mark have after 5 years if he saves £100 a month at an interest rate of 0.5% per month? [3]

Total 60 marks

Solutions to topic assessment

1.
$$a = 3, d = 5$$

(i) $a_k = a + (k - 1)d$
 $a_4 = 3 + 3(5)$
 $= 3 + 15$
 $= 18$
(ii) $s_n = \frac{1}{2}n[2a + (n - 1)d]$
 $s_{12} = \frac{1}{2} \times 12[(2 \times 3) + (11 \times 5)]$
 $= 6[6 + 55]$
 $= 6 \times 61$
 $= 366$

2.
$$a_{5} = 16$$
, $a_{10} = 30$
(i) $16 = a + 4d$ ①
 $30 = a + 9d$ ②
② - ①: $14 = 5d$
 $d = 2.8$
 $16 = a + 4(2.8)$
 $16 = a + 11.2$
 $a = 4.8$

(ii)
$$s_n = \frac{1}{2}n[2a + (n-1)d]$$

 $1000 = \frac{1}{2}n[2(4.8) + (n-1)(2.8)]$
 $1000 = \frac{1}{2}n[9.6 + 2.8n - 2.8]$
 $1000 = \frac{1}{2}n[6.8 + 2.8n]$
 $2000 = n[6.8 + 2.8n]$
 $2000 = 6.8n + 2.8n^2$
 $2.8n^2 + 6.8n - 2000 = 0$
 $n = \frac{-6.8 \pm \sqrt{6.8^2 - (4 \times 2.8 \times -2000)}}{2 \times 2.8}$
 $n = \frac{-6.8 \pm \sqrt{22446.24}}{5.6}$
 $n = 25.53$ (n cannot be negative)

The number of terms needed is therefore be 26.

[2]

[3]

[4]

Check:
$$s_{25} = \frac{1}{2} \times 25 [(2 \times 4.8) + (25 - 1) (2.8)]$$

= 960
 $s_{26} = \frac{1}{2} \times 26 [(2 \times 4.8) + (26 - 1) (2.8)]$
= 1034.8

$$a = 2, r = 0.2$$

(i) $a_k = ar^{k-1}$
 $a_3 = (2) (0.2^2)$
 $a_3 = 0.08$

з.

4.

(ii) $S_{\mu} = \frac{A(1-r^{\mu})}{1-r}$ $S_{4} = \frac{2(1-(0.2)^{4})}{1-0.2}$ $S_{4} = 2.496$

(iii)
$$s_{\infty} = \frac{a}{1-r}$$

 $s_{\infty} = \frac{2}{1-0.2}$
 $s_{\infty} = 2.5$

$$A = 3, \ S_{\infty} = 8$$
$$S_{\infty} = \frac{A}{1 - r}$$
$$8 = \frac{3}{1 - r}$$
$$8(1 - r) = 3$$
$$1 - r = \frac{3}{8}$$
$$r = 1 - \frac{3}{8}$$
$$r = \frac{5}{8}$$

5.
$$a = 54, a_4 = 2$$

(i) $a_k = ar^{k-1}$
 $2 = 54(r^3)$
 $r^3 = \frac{1}{27}$
 $r = \frac{1}{3}$

[4]

[2]

[3]

[2]

[4]

[3]

$$\begin{aligned} \text{(ii)} \quad S_{\infty} &= \frac{A}{1-r} \\ S_{\infty} &= \frac{54}{1-\frac{1}{3}} \\ S_{\infty} &= 81 \end{aligned}$$
$$\begin{aligned} \text{(iii)} \quad S_{\infty} &= 81 \\ \frac{99}{100} \times 81 &= 80.19 \\ S_{\mu} &= \frac{A(1-r^{\mu})}{1-r} \\ 80.19 < \frac{54\left(1-\left(\frac{1}{3}\right)^{\mu}\right)}{1-\left(\frac{1}{3}\right)} \\ 54\left(1-\left(\frac{1}{3}\right)^{\mu}\right) > 80.19\left(\frac{2}{3}\right) \\ 1-\left(\frac{1}{3}\right)^{\mu} > \frac{53.46}{54} \\ \left(\frac{1}{3}\right)^{\mu} < 0.01 \end{aligned}$$

There are 2 methods that you can use to solve this. Method 1: Trial and error

 $n = 10, \left(\frac{1}{3}\right)^{10} = 0.0000169$ $n = 5, \left(\frac{1}{3}\right)^{5} = 0.00411$ $n = 4, \left(\frac{1}{3}\right)^{4} = 0.0123$

Method 2: Using logarithms

The sum is more than 99% of the sum to infinity after the 5th term.

[5]

[2]

6. (i) There are 52 weeks in a year, and so the total amount of pocket money in the first year is: $52 \times \pm 0.5 = \pm 26$

[2]

(ii) In the second year, there are still 52 weeks of pocket money, but it has increased by 50p each week so the increase overall is: $52 \times \pm 0.5 = \pm 26$

[3]

(iii)
$$a = 26$$
, $d = 26$
 $S_n = \frac{1}{2}n[2a + (n-1)d]$
 $S_6 = \frac{1}{2} \times 6[(2 \times 26) + (6-1)(26)]$
 $= 3[52 + 130]$
 $= 3 \times 182$
 $= 546$
Mirka has been given £546 in total by her 11th birthday.

[3]

(iv)
$$s_n = \frac{1}{2}n[2a + (n-1)d]$$

 $1000 = \frac{1}{2}n[(2 \times 26) + (n-1)(26)]$
 $2000 = n[52 + 26n - 26]$
 $2000 = n[26n + 26]$
 $2000 = 26n^2 + 26n$
 $1000 = 13n^2 + 13$
 $13n^2 + 13n - 1000 = 0$
 $n = \frac{-13 \pm \sqrt{13^2 - (4 \times 13 \times -1000)}}{2 \times 13}$
 $n = \frac{-13 \pm \sqrt{169 + 52000}}{26}$
 $n = -9.28$ or $n = 8.284$

n cannot be a negative number, and so in complete years, n must equal 9. Check: $s_g = \frac{1}{2} \times 8[(2 \times 26) + (7 \times 26)]$

$$= 936$$

 $s_{9} = \frac{1}{2} \times 9[(2 \times 26) + (8 \times 26)]$
= 1170

Mirka has been given more than £1000 after 9 complete years.

[4]

$$\neq. \text{ As r is a percentage, adding interest of r% is equivalent to multiplying the total amount by $1 + \frac{r}{100}$, so:
(i) (a) 1^{st} month: Money = $N\left(1 + \frac{r}{100}\right)$
(b) 2^{nd} month: Money = $\left(N + N\left(1 + \frac{r}{100}\right)\right) \times \left(1 + \frac{r}{100}\right)$
 $= N\left(1 + \frac{r}{100}\right) + N\left(1 + \frac{r}{100}\right)^2$
Another N is added to last month's total, and the whole amount is multiplied by $1 + \frac{r}{100}$ for the interest.
 $5 \text{ of } 6$$$

integralmaths.org

(c)
$$3^{rd}$$
 month: Money $= \left(N + N\left(1 + \frac{r}{100}\right) + N\left(1 + \frac{r}{100}\right)^2\right) \times \left(1 + \frac{r}{100}\right)$
 $= N\left(1 + \frac{r}{100}\right) + N\left(1 + \frac{r}{100}\right)^2 + N\left(1 + \frac{r}{100}\right)^3$
As before, add another N
and multiply the whole
amount by $1 + \frac{r}{100}$.

Looking at these results, you can see that the general result for the total after n month is:

$$N\left(1+\frac{r}{100}\right)+N\left(1+\frac{r}{100}\right)^{1}+N\left(1+\frac{r}{100}\right)^{2}+N\left(1+\frac{r}{100}\right)^{3}+...+N\left(1+\frac{r}{100}\right)^{n}$$

(ii) This is a geometric progression with $a = N\left(1 + \frac{r}{100}\right)$ and $r = \left(1 + \frac{r}{100}\right)$

$$S_{n} = \frac{n(r^{n} - 1)}{r - 1}$$

$$S_{n} = \frac{N\left(1 + \frac{r}{100}\right)\left(\left(1 + \frac{r}{100}\right)^{n} - 1\right)}{1 + \frac{r}{100} - 1}$$

$$S_{n} = \frac{100N\left(1 + \frac{r}{100}\right)\left(\left(1 + \frac{r}{100}\right)^{n} - 1\right)}{r}$$

[3]

[8]

(ííí)After 5 years, a total of 60 months have passed so n = 60. If the interest rate is 0.5%, then r = 0.5. If Mark puts in £100 a month, then N = 100.

$$\begin{split} S_{60} &= \frac{(100 \times 100) \left(1 + \frac{0.5}{100}\right) \left(\left(1 + \frac{0.5}{100}\right)^{60} - 1\right)}{0.5} \\ S_{60} &= \frac{(10000) (1.005) \left((1.005)^{60} - 1\right)}{0.5} \\ S_{60} &= 7011.888... \\ S_{60} &= £7011.89 \end{split}$$

[3]