## Topic assessment

1. (i) By considering turning points, show that $x^{3}-3 x^{2}+5=0$ has only one real root and that this root lies between -2 and -1 .
(ii) Show that this root is -1.104 , correct to 3 d.p.
2. (i) By sketching the line $y=x+7$ and the curve $y=\frac{1}{8} x^{4}$, show that the equation $x^{4}-8 x-56=0$ has two real roots.
(ii) Show that the positive root lies between $x=2$ and $x=3$.
(iii) Use the iterative formula $x_{n+1}=\sqrt[4]{8 x_{n}+56}$, starting from $x=3$, to find the value of the positive root correct to 2 decimal places.
3. (i) Show that the equation $\mathrm{e}^{x}=x^{3}-1$ has a real root between $x=2$ and $x=3$.
(ii) Use the iterative formula $x_{n+1}=\frac{\mathrm{e}^{x_{n}}+1}{x_{n}^{2}}$, starting from $x_{0}=2$, to find two further approximations to the root.
(iii) Show that the root is 2.081 correct to 3 decimal places.
4. (i) Show that the gradient of $y=2 x^{3}+4 x-5$ is always positive and deduce that the equation $2 x^{3}+4 x-5=0$ has one real root only.
(ii) Show that this root lies between $x=0$ and $x=1$.
(iii) Show that the equation can be rearranged into the form $x=\frac{5}{2 x^{2}+4}$.
(iv) Using the iterative formula $x_{n+1}=\frac{5}{2 x_{n}^{2}+4}$ and starting from $x_{0}=1$, find the next two approximations $x_{1}$ and $x_{2}$ to the root.
(v) The diagram below shows part of the graphs of $y=x$ and $y=\frac{5}{2 x^{2}+4}$, and the position of $x_{0}$.


## Edexcel A level Maths Num methods Assessment

Copy the diagram and draw on it a staircase or cobweb diagram to illustrate how the iterations converge to the root. Indicate the positions of $x_{1}$ and $x_{2}$ on the $x$-axis.
(vi) Show that the root is 0.893 correct to 3 decimal places.
5. The root of the equation $x^{3}-x+5=0$ is denoted by $\alpha$.

Taking a first approximation $x_{1}=-2$, use the Newton-Raphson method to find the value of $\alpha$ correct to 4 decimal places.
6. The diagram shows a cross-section of a tunnel. The height is measured in metres every 0.5 metres along the cross section. Use the trapezium rule to estimate the area of the cross-section.

Is it an under-estimate or over-estimate?

7. An estimate is required for the integral $\int_{0}^{1} x \sqrt{x^{3}+1} \mathrm{~d} x$.
(i) Using 5 rectangles, find overestimates and underestimates for the value of the integral.
(ii) If 20 rectangles were used, find the difference between the overestimate and underestimate for the value of this integral.
(iii)The difference between the overestimate and the underestimate is required to be less than 0.001 .
Find the minimum number of rectangles required.

Total 60 marks

