Edexcel A level Maths Numerical methods

Topic assessment

1. (i) By considering turning points, show that $x^{3}-3 x^{2}+5=0$ has only one real root and that this root lies between -2 and -1 .
(ii) Show that this root is -1.104 , correct to 3 d.p.
2. (i) By sketching the line $y=x+7$ and the curve $y=\frac{1}{8} x^{4}$, show that the equation $x^{4}-8 x-56=0$ has two real roots.
(ii) Show that the positive root lies between $x=2$ and $x=3$.
(iii) Use the iterative formula $x_{n+1}=\sqrt[4]{8 x_{n}+56}$, starting from $x=3$, to find the value of the positive root correct to 2 decimal places.
3. (i) Show that the equation $\mathrm{e}^{x}=x^{3}-1$ has a real root between $x=2$ and $x=3$.
(ii) Use the iterative formula $x_{n+1}=\frac{\mathrm{e}^{x_{n}}+1}{x_{n}^{2}}$, starting from $x_{0}=2$, to find two further approximations to the root.
(iii) Show that the root is 2.081 correct to 3 decimal places.
4. (i) Show that the gradient of $y=2 x^{3}+4 x-5$ is always positive and deduce that the equation $2 x^{3}+4 x-5=0$ has one real root only.
(ii) Show that this root lies between $x=0$ and $x=1$.
(iii) Show that the equation can be rearranged into the form $x=\frac{5}{2 x^{2}+4}$.
(iv) Using the iterative formula $x_{n+1}=\frac{5}{2 x_{n}^{2}+4}$ and starting from $x_{0}=1$, find the next two approximations x_{1} and x_{2} to the root.
(v) The diagram below shows part of the graphs of $y=x$ and $y=\frac{5}{2 x^{2}+4}$, and the position of x_{0}.

Copy the diagram and draw on it a staircase or cobweb diagram to illustrate

Edexcel A level Num methods Assessment solns

how the iterations converge to the root. Indicate the positions of x_{1} and x_{2} on the x-axis.
(vi) Show that the root is 0.893 correct to 3 decimal places.
5. The root of the equation $x^{3}-x+5=0$ is denoted by α.

Taking a first approximation $x_{1}=-2$, use the Newton-Raphson method to find the value of α correct to 4 decimal places.
6. The diagram shows a cross-section of a tunnel. The height is measured in metres every 0.5 metres along the cross section. Use the trapezium rule to estimate the area of the cross-section.

Is it an under-estimate or over-estimate?

7. An estimate is required for the integral $\int_{0}^{1} x \sqrt{x^{3}+1} \mathrm{~d} x$.
(i) Using 5 rectangles, find overestimates and underestimates for the value of the integral.
(ii) If 20 rectangles were used, find the difference between the overestimate and underestimate for the value of this integral.
(iii)The difference between the overestimate and the underestimate is required to be less than 0.001.
Find the minimum number of rectangles required.

Edexcel A level Num methods Assessment solns

Solutions to Topic Assessment

1. (i) $f(x)=x^{3}-3 x^{2}+5$
$f^{\prime}(x)=3 x^{2}-6 x$
At turning points, $3 x^{2}-6 x=0$

$$
\begin{aligned}
& 3 x(x-2)=0 \\
& x=0 \text { or } x=2
\end{aligned}
$$

When $x=0, f(x)=5$
When $x=2, f(x)=8-3 \times 4+5=1$
Both turning points are above the x-axis, so the curve $y=x^{3}-3 x^{2}+5$ crosses the x-axis once only.
Therefore the equation $x^{3}-3 x^{2}+5=0$ has only one real root.
$f(-2)=-8-3 \times 5+5=-15$
$f(-1)=-1-3+5=1$
There is a change of sign between $x=-2$ and $x=-1$, so the root lies between these two values.
(ii) $f(-1.1035)=(-1.1035)^{3}-3(-1.1035)^{2}+5=0.00312$
$f(-1.1045)=(-1.1045)^{3}-3(-1.1045)^{2}+5=-0.00716$
There is a change of sign between -1.1035 and -1.1045 , so the root lies between these two values, and therefore the root is -1.104 to $3 \mathrm{~d} . \mathrm{p}$.
2. (i) At intersections, $\frac{1}{8} x^{4}=x+7 \Rightarrow x^{4}=8(x+7) \Rightarrow x^{4}-8 x-56=0$

The graphs intersect at two points, so the equation $x^{4}-8 x-56=0$ has two real roots.
(ii) $f(x)=x^{4}-8 x-56$
$f(2)=16-16-56=-56$
$f(3)=81-24-56=1$
There is a change of sign between $x=2$ and $x=3$, so there is a root between these values.
(iii) $x_{n+1}=\sqrt[4]{8 x+56}$
$x_{0}=3$

Edexcel A level Num methods Assessment solns

$x_{1}=\sqrt[4]{8 x_{0}+56}=\sqrt[4]{8 \times 3+56}=2.9907$
$x_{2}=\sqrt[4]{8 x_{1}+56}=\sqrt[4]{8 \times 2.9907+56}=2.9900$
$x_{3}=\sqrt[4]{8 x_{2}+56}=\sqrt[4]{8 \times 2.9900+56}=2.9899$
The root is 2.99 to 2 decimal places.
3. (i) $f(x)=e^{x}-x^{3}+1$
$f(2)=e^{2}-2^{3}+1=0.389 \ldots$
$f(3)=e^{3}-3^{3}+1=-5.914 \ldots$
So there is a root between $x=2$ and $x=3$.
(ii) $x_{n+1}=\frac{e^{x_{n}}+1}{x_{n}^{2}}$
$x_{0}=2$
$x_{1}=\frac{e^{x_{0}}+1}{x_{0}^{2}}=\frac{e^{2}+1}{2^{2}}=2.09726$
$x_{2}=\frac{e^{x_{1}}+1}{x_{1}^{2}}=\frac{e^{2.09726}+1}{2.09726^{2}}=2.07885$
(iii) $f(x)=e^{x}-x^{3}+1$
$f(2.0805)=e^{2.0805}-2.0805^{3}+1=0.00307$
$f(2.0815)=e^{2.0815}-2.0815^{3}+1=-0.00191$
There is a change of sign between 2.0805 and 2.0815, so the root lies between these two values, and therefore the root is 2.081 to 3 d.p.
4. (i) $y=2 x^{3}+4 x-5$
$\frac{d y}{d x}=6 x^{2}+4$
The gradient is always positive, so there are no turning points.
since the value of y is positive for large positive x, and negative for large negative x, the graph must cut the x-axis at least once. Since there are no turning points, it cuts the x-axis once only.
Therefore the equation $2 x^{3}+4 x-5=0$ has one real root only.
(ii) $f(x)=2 x^{3}+4 x-5$
$f(0)=-5$
$f(1)=2+4-5=1$
There is a change of sign between $x=0$ and $x=1$, so there is a root between these two values.

Edexcel A level Num methods Assessment solns
(iii) $2 x^{3}+4 x-5=0$
$2 x^{3}+4 x=5$
$x\left(2 x^{2}+4\right)=5$
$x=\frac{5}{2 x^{2}+4}$
(iv) $x_{n+1}=\frac{5}{2 x_{n}^{2}+4}$
$x_{0}=1$
$x_{1}=\frac{5}{2 x_{0}^{2}+4}=\frac{5}{2 \times 1^{2}+4}=0.8333$
$x_{2}=\frac{5}{2 x_{1}^{2}+4}=\frac{5}{2 \times 0.8333^{2}+4}=0.9278$
(v)

(vi) $f(0.8925)=2 \times 0.8925^{3}+4 \times 0.8925-5=-0.00815$ $f(0.8935)=2 \times 0.8935^{3}+4 \times 0.8935-5=0.000638$
There is a change of sign between 0.8925 and 0.8935 , so the root lies between these two values, and therefore the root is 0.893 to $3 \mathrm{~d} . \mathrm{p}$.
5. $f(x)=x^{3}-x+5$
$f^{\prime}(x)=3 x^{2}-1$
$x_{1}=-2$
$x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=-1.90909$
$x_{3}=-1.904175$
$x_{4}=-1.904161$
$x_{5}=-1.904161$
The root is -1.9042 to $4 \mathrm{~d} . \mathrm{p}$.

Edexcel A level Num methods Assessment solns

Check: $f(-1.90415)=0.0001 \ldots>0$
$f(-1.90425)=-0.0008 \ldots<0$
so the root is -1.9042 to 4 d.p.
6. $h=0.5$
using the trapezium rule:
Area $=\frac{1}{2} h\left[f_{0}+f_{6}+2\left(f_{1}+f_{2}+f_{3}+f_{4}+f_{5}\right)\right]$
$=\frac{1}{2} \times 0.5[0+0+2(1.35+1.84+1.85+2.12+1.86)]$

$$
=4.51
$$

This is an underestimate, since most of the trapezia will lie below the actual curve.
7. (i) Overestimate:

$$
\begin{aligned}
\text { Area }= & 0.2 \times 0.2 \sqrt{0.2^{3}+1}+0.2 \times 0.4 \sqrt{0.4^{3}+1}+0.2 \times 0.6 \sqrt{0.6^{3}+1} \\
& +0.2 \times 0.8 \sqrt{0.8^{3}+1}+0.2 \times 1 \sqrt{1^{3}+1} \\
= & 0.735
\end{aligned}
$$

underestimate:

$$
\begin{aligned}
\text { Area }= & 0.2 \times 0 \sqrt{0^{3}+1}+0.2 \times 0.2 \sqrt{0.2^{3}+1}+0.2 \times 0.4 \sqrt{0.4^{3}+1} \\
& \quad+0.2 \times 0.6 \sqrt{0.6^{3}+1}+0.2 \times 0.8 \sqrt{0.8^{3}+1} \\
= & 0.452
\end{aligned}
$$

(ii) Using 20 rectangles, the width of each rectangle would be 0.05

Area of largest rectangle for overestimate $=0.05 \times 1 \sqrt{1^{3}+1}$

Edexcel A level Num methods Assessment solns

Area of smallest rectangle for underestimate $=0.05 \times 0 \sqrt{0^{3}+1}$
Difference between overestimate and underestimate $=0.05 \sqrt{2}-0$

$$
=0.071
$$

(iii) Using n rectangles, the width of each rectangle would be $\frac{1}{n}$.

Difference between overestimate and underestimate $=\frac{1}{n} \sqrt{2}$

$$
\begin{aligned}
& \frac{1}{n} \sqrt{2}<0.001 \\
& n>1000 \sqrt{2} \\
& n>1414.2 \ldots
\end{aligned}
$$

At least 1415 rectangles are required.

