# **Edexcel A level Maths Numerical methods**



#### **Topic assessment**

| 1. | (i)   | By considering turning points, show that $x^3 - 3x^2 + 5 = 0$ has only one real root and that this root lies between $-2$ and $-1$ .      | [4]   |
|----|-------|-------------------------------------------------------------------------------------------------------------------------------------------|-------|
|    | (ii)  | Show that this root is -1.104, correct to 3 d.p.                                                                                          | [2]   |
| 2. | (i)   | By sketching the line $y = x + 7$ and the curve $y = \frac{1}{8}x^4$ , show that the equation $x^4 - 8x - 56 = 0$ has two real roots.     | [3]   |
|    | (ii)  | Show that the positive root lies between $x = 2$ and $x = 3$ .                                                                            | [2]   |
|    | (iii) | Use the iterative formula $x_{1} = \frac{4}{8x_{1} + 56}$ starting from $x = 3$ to find the                                               |       |
|    | (111) | value of the positive root correct to 2 decimal places.                                                                                   | [4]   |
| 3  | (i)   | Show that the equation $e^x = x^3 - 1$ has a real root between $x = 2$ and $x = 3$ .                                                      | [2]   |
| 5. | (ii)  | Use the iterative formula $x_{n+1} = \frac{e^{x_n} + 1}{x_n^2}$ , starting from $x_0 = 2$ , to find two further                           | [-]   |
|    |       | approximations to the root.                                                                                                               | [4]   |
|    | (iii) | Show that the root is 2.081 correct to 3 decimal places.                                                                                  | [2]   |
| 4. | (i)   | Show that the gradient of $y = 2x^3 + 4x - 5$ is always positive and deduce that the equation $2x^3 + 4x - 5 = 0$ has one real root only. | [2]   |
|    | (ii)  | Show that this root lies between $x = 0$ and $x = 1$ .                                                                                    | [2]   |
|    | (iii) | Show that the equation can be rearranged into the form $x = \frac{5}{2x^2 + 4}$ .                                                         | [2]   |
|    | (iv)  | Using the iterative formula $x_{n+1} = \frac{5}{2x_n^2 + 4}$ and starting from $x_0 = 1$ , find the next                                  | t two |
|    |       | approximations $x_1$ and $x_2$ to the root.                                                                                               | [4]   |
|    | (v)   | The diagram below shows part of the graphs of $y = x$ and $y = \frac{5}{2x^2 + 4}$ , and                                                  |       |
|    |       | the position of $x_0$ .                                                                                                                   |       |
|    |       | y = x                                                                                                                                     |       |
|    |       |                                                                                                                                           |       |
|    |       |                                                                                                                                           |       |
|    |       | 5                                                                                                                                         |       |

Copy the diagram and draw on it a staircase or cobweb diagram to illustrate

1



how the iterations converge to the root. Indicate the positions of  $x_1$  and  $x_2$ on the *x*-axis.

- (vi) Show that the root is 0.893 correct to 3 decimal places.
- 5. The root of the equation  $x^3 x + 5 = 0$  is denoted by  $\alpha$ . Taking a first approximation  $x_1 = -2$ , use the Newton-Raphson method to find the value of  $\alpha$  correct to 4 decimal places. [6]
- y 6. The diagram shows a cross-section of a tunnel. The height is measured in metres every 0.5 metres along the cross section. Use the trapezium rule to estimate the 1.84 1.85 2.12 1.35 area of the cross-section. 0.5 Is it an under-estimate or over-estimate?

- 7. An estimate is required for the integral  $\int_0^1 x \sqrt{x^3 + 1} \, dx$ .
  - (i) Using 5 rectangles, find overestimates and underestimates for the value of the integral. [6]
  - (ii) If 20 rectangles were used, find the difference between the overestimate and underestimate for the value of this integral. [3]

(iii)The difference between the overestimate and the underestimate is required to be less than 0.001. [3]

Find the minimum number of rectangles required.

#### **Total 60 marks**

1.86

[2]

[2]

х

[5]

#### **Solutions to Topic Assessment**

1. (i) 
$$f(x) = x^3 - 3x^2 + 5$$
  
 $f'(x) = 3x^2 - 6x$   
At turning points,  $3x^2 - 6x = 0$   
 $3x(x-2) = 0$   
 $x = 0$  or  $x = 2$   
When  $x = 0$ ,  $f(x) = 5$   
When  $x = 2$ ,  $f(x) = 8 - 3 \times 4 + 5 = 1$   
Both turning points are above the x-axis, so the curve  $y = x^3 - 3x^2 + 5$   
crosses the x-axis once only.  
Therefore the equation  $x^3 - 3x^2 + 5 = 0$  has only one real root.  
 $f(-2) = -8 - 3 \times 5 + 5 = -15$   
 $f(-1) = -1 - 3 + 5 = 1$   
There is a change of sign between  $x = -2$  and  $x = -1$ , so the root lies between these two values.  
[4]

(ii) 
$$f(-1.1035) = (-1.1035)^3 - 3(-1.1035)^2 + 5 = 0.00312$$
  
 $f(-1.1045) = (-1.1045)^3 - 3(-1.1045)^2 + 5 = -0.00716$   
There is a change of sign between -1.1035 and -1.1045, so the root lies  
between these two values, and therefore the root is -1.104 to 3 d.p.  
[2]

2. (i) At intersections,  $\frac{1}{8}x^4 = x + \mathcal{F} \Rightarrow x^4 = 8(x + \mathcal{F}) \Rightarrow x^4 - 8x - 56 = 0$ 



The graphs intersect at two points, so the equation  $x^4 - 8x - 56 = 0$  has two real roots.

 $(ii) f(x) = x^4 - 8x - 56$ 

f(2) = 16 - 16 - 56 = -56f(3) = 81 - 24 - 56 = 1

There is a change of sign between x = 2 and x = 3, so there is a root between these values.

(iii) 
$$x_{n+1} = \sqrt[4]{8x+56}$$
  
 $x_0 = 3$ 

[3]

 $x_{1} = \sqrt[4]{8x_{0} + 56} = \sqrt[4]{8 \times 3 + 56} = 2.9907$   $x_{2} = \sqrt[4]{8x_{1} + 56} = \sqrt[4]{8 \times 2.9907 + 56} = 2.9900$   $x_{3} = \sqrt[4]{8x_{2} + 56} = \sqrt[4]{8 \times 2.9900 + 56} = 2.9899$ The root is 2.99 to 2 decimal places.

3. (i)  $f(x) = e^{x} - x^{3} + 1$   $f(2) = e^{2} - 2^{3} + 1 = 0.389...$  $f(3) = e^{3} - 3^{3} + 1 = -5.914...$ 

So there is a root between x = 2 and x = 3.

(ii) 
$$x_{n+1} = \frac{e^{x_n} + 1}{\chi_n^2}$$
  
 $x_0 = 2$   
 $x_1 = \frac{e^{x_0} + 1}{\chi_0^2} = \frac{e^2 + 1}{2^2} = 2.09726$   
 $x_2 = \frac{e^{x_1} + 1}{\chi_1^2} = \frac{e^{2.09726} + 1}{2.09726^2} = 2.07885$ 

(iii) 
$$f(x) = e^{x} - x^{3} + 1$$
  
 $f(2.0805) = e^{2.0805} - 2.0805^{3} + 1 = 0.00307$   
 $f(2.0815) = e^{2.0815} - 2.0815^{3} + 1 = -0.00191$   
There is a change of sign between 2.0805 and 2.0815, so the root lies  
between these two values, and therefore the root is 2.081 to 3 d.p.

[2]

[4]

[4]

[2]

4. (i)  $y = 2x^3 + 4x - 5$ 

$$\frac{dy}{dx} = 6x^2 + 4$$

The gradient is always positive, so there are no turning points. Since the value of y is positive for large positive x, and negative for large negative x, the graph must cut the x-axis at least once. Since there are no turning points, it cuts the x-axis once only.

Therefore the equation  $2x^3 + 4x - 5 = 0$  has one real root only.

(ii)  $f(x) = 2x^3 + 4x - 5$ f(0) = -5

$$f(1) = 2 + 4 - 5 =$$

1

There is a change of sign between x = 0 and x = 1, so there is a root between these two values.

[2]

[2]



between these two values, and therefore the root is 0.893 to 3 d.p.

[2]

5.  $f(x) = x^3 - x + 5$ 

$$f'(x) = 3x^{2} - 1$$

$$x_{1} = -2$$

$$x_{2} = x_{1} - \frac{f(x_{1})}{f'(x_{1})} = -1.90909$$

$$x_{3} = -1.904175$$

$$x_{4} = -1.904161$$

$$x_{5} = -1.904161$$
The root is -1.9042 to 4 d.p.

Check: f(-1.90415) = 0.0001... > 0f(-1.90425) = -0.0008... < 0so the root is -1.9042 to 4 d.p.

6. h = 0.5

Using the trapezium rule: Area =  $\frac{1}{2}h[f_o + f_e + 2(f_1 + f_2 + f_3 + f_4 + f_5)]$ =  $\frac{1}{2} \times 0.5 [0 + 0 + 2(1.35 + 1.84 + 1.85 + 2.12 + 1.86)]$ = 4.51

This is an underestimate, since most of the trapezia will lie below the actual curve.

[5]





Area =  $0.2 \times 0.2 \sqrt{0.2^3 + 1} + 0.2 \times 0.4 \sqrt{0.4^3 + 1} + 0.2 \times 0.6 \sqrt{0.6^3 + 1}$ +  $0.2 \times 0.8 \sqrt{0.8^3 + 1} + 0.2 \times 1 \sqrt{1^3 + 1}$ = 0.735

Underestimate:



[6]

(ii) Using 20 rectangles, the width of each rectangle would be 0.05 Area of largest rectangle for overestimate =  $0.05 \times 1\sqrt{1^3 + 1}$ 

Area of smallest rectangle for underestimate =  $0.05 \times 0\sqrt{0^3 + 1}$ Difference between overestimate and underestimate =  $0.05\sqrt{2} - 0$ = 0.071

(iii) Using n rectangles, the width of each rectangle would be  $\frac{1}{n}$ .

Difference between overestimate and underestimate  $=\frac{1}{n}\sqrt{2}$ 

$$\frac{1}{n}\sqrt{2} < 0.001$$
$$n > 1000\sqrt{2}$$

n > 1414.2...

At least 1415 rectangles are required.

| 1 5 | 21 |
|-----|----|
| 1.0 | ~  |
| _   | _  |

[3]