Topic assessment

1. Expand $(3-x)^{-4}$ in ascending powers of x up to and including the term in x^{3}, stating the range for which the expansion is valid.
2. Simplify $\frac{4 x^{2}-1}{2 x^{2}+5 x-3}$.
3. Write as a single fraction in its simplest form $\frac{x}{x-3}-\frac{3 x}{x^{2}-9}$.
4. Write $\frac{6}{9 x^{2}-1}$ as a sum of two partial fractions.
5. Given that $\frac{x+15}{(x-1)(x+3)} \equiv \frac{A}{x-1}+\frac{B}{x+3}$ find values for A and B.
6. Divide $\frac{x^{2}-3 x-4}{x^{2}-25}$ by $\frac{x+1}{x-5}$.
7. Divide $x^{3}-2 x^{2}+3$ by $x+3$.
8. $\frac{1+x}{1-2 x}$ is approximately equal to $1+a x+b x^{2}$. Find the values of a and b.
9. (i) Write $\frac{9}{(1-x)(1+2 x)^{2}}$ as partial fractions.
(ii) Using your answer to part (i), expand $\frac{9}{(1-x)(1+2 x)^{2}}$ up to and including the term in x^{2}, stating the range of values for which your expansion is valid.
10. (i) Write $\mathrm{f}(x)=\frac{4}{(x-1)(x+3)}$ as partial fractions.
(ii) Hence show that $\mathrm{f}^{\prime}(x)=\frac{-1}{(x-1)^{2}}+\frac{1}{(x+3)^{2}}$.
(iii)Find the x co-ordinate(s) of any turning points on the curve $y=\mathrm{f}(x)$.
(iv)Find $\mathrm{f}^{\prime \prime}(x)$ and hence identify the nature of the turning point(s).
