Topic assessment

1. The functions f, g and h are defined as follows:

$$
\begin{array}{ll}
\mathrm{f}(x)=\mathrm{e}^{x} & x \in \mathbb{R} \\
\mathrm{~g}(x)=\sqrt{x} & x \geq 0 \\
\mathrm{~h}(x)=2 x+1 & x \in \mathbb{R}
\end{array}
$$

Find each of the following functions, giving the domain and range of each.
(i) $\mathrm{fg}(x)$
(ii) $\operatorname{gh}(x)$
(iii) $\operatorname{hf}(x)$
(iv) $\mathrm{f}^{-1}(x)$
(v) $\mathrm{h}^{-1}(x)$
2. (i) Sketch the graph of $y=|2 x+1|$.
(ii) Hence, or otherwise, solve each of the following equations:
(a) $|2 x+1|=3-x$
(b) $\quad|2 x+1|=3 x-2$
3. The diagram below shows the graph $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=\frac{x-1}{x}$ for $x>0$.

The graph approaches the line $y=1$ as x becomes very large.

(i) Write down the domain and range of $\mathrm{f}(x)$.
(ii) Find the inverse function $\mathrm{f}^{-1}(x)$.
(iii) Write down the domain and range of $\mathrm{f}^{-1}(x)$.
(iv) Sketch the graph of $y=\mathrm{f}^{-1}(x)$ for the domain you gave in (iii).
(v) What is the relationship between the graph of $y=\mathrm{f}(x)$ and the graph of $y=\mathrm{f}^{-1}(x)$?
4. The graph of a function $y=\mathrm{f}(x)$ is shown below. The graph has a local maximum at $(-1,1)$ and a local minimum at $(2,-2)$.

Edexcel A level Maths Functions Assessment solns

Sketch the graphs of:
(i) $y=3 \mathrm{f}(2 x) \quad$ [3]
(ii) $y=2 \mathrm{f}(x-1)$
(iii) $y=\mathrm{f}(2 x)-1$
(iv) $y=\mathrm{f}(-x)+1$ [3]
giving the coordinates of the turning points in each case.
5. (i) Solve the inequality $|3 x-2| \leq 4$.
(ii) Write the inequality $-2<x<7$ in the form $|x-a|<b$.

Total 50 marks

Edexcel A level Maths Functions Assessment solns

Solutions to topic assessment

1. (i) $f g(x)=f(\sqrt{x})=e^{\sqrt{x}}$

Domain is $x \geq 0$
Range is $f g(x) \geq 1$
(ii) $g h(x)=g(2 x+1)=\sqrt{2 x+1}$ Domain is $x \geq-\frac{1}{2}$
Range is $g h(x) \geq 0$. 0

(iii) $h f(x)=h\left(e^{x}\right)=2 e^{x}+1$

Since $g(x)$ is defined as a function, only the positive square root is used, giving this range.
(iv) $y=e^{x}$
$\ln y=x$
$f^{-1}(x)=\ln x$
Domain is $x>0$
Range is $f^{-1}(x) \in \mathbb{R}$
(v) $y=2 x+1$
$y-1=2 x$
$x=\frac{y-1}{2}$
$h^{-1}(x)=\frac{x-1}{2}$
Domain is $x \in \mathbb{R}$
Range is $h^{-1}(x) \in \mathbb{R}$
2. (i) $y=|2 x+1|$

Edexcel A level Maths Functions Assessment solns

(ii) (a) $|2 x+1|=3-x$

The graph shows that there are two roots.

$$
\begin{array}{ll}
2 x+1=3-x & -(2 x+1)=3-x \\
3 x=2 & -2 x-1=3-x \\
x=\frac{2}{3} & -4=x
\end{array}
$$

So $x=\frac{2}{3}$ and $x=-4$
(b) $|2 x+1|=3 x-2$

The graph shows that there is just one root $2 x+1=3 x-2$

3. (i) Domain is $x>0$

Range is $f(x)<1$
(ii) $y=\frac{x-1}{x}$
$x y=x-1$
$1=x-x y$
$1=x(1-y)$
$x=\frac{1}{1-y}$
$f^{-1}(x)=\frac{1}{1-x}$
(iii) Domain is $x<1$

Range is $f(x)>0$
(iv)

(v) They are reflections of each other in the line $y=x$.

Edexcel A level Maths Functions Assessment solns

4. (i) $y=3 f(2 x)$

The graph is stretched scale factor 3 in the y direction, and scale factor $\frac{1}{2}$ in the x direction.
The turning points are $(1,-6)$ and $\left(-\frac{1}{2}, 3\right)$.

(ii) $y=2 f(x-1)$

The graph is translated 1 unit horizontally to the right, and stretched scale factor 2 in the y direction.
The turning points are $(3,-4)$ and $(0,2)$

(iii) $y=f(2 x)-1$

The graph is stretched scale factor $\frac{1}{2}$ parallel to the x axis, and translated 1 unit downwards.
The turning points are $(1,-3)$ and $\left(-\frac{1}{2}, 0\right)$

(iv) $y=f(-x)+1$

The graph is reflected in the y-axis, and translated 1 unit upwards. The turning points are $(-2,-1)$ and $(1,2)$.

5. (i) $|3 x-2| \leq 4$
$-4 \leq 3 x-2 \leq 4$
$-2 \leq 3 x \leq 6$
$-\frac{2}{3} \leq x \leq 2$
(ii) $-2<x<7$
$-2-2.5<x-2.5<7-2.5$
$-4.5<x-2.5<4.5$
$|x-2.5|<4.5$

