Edexcel A level Mathematics Differentiation

Topic assessment

1. Using the chain rule, differentiate $\left(x^{2}-1\right)^{6}$.
2. Show that the gradient of $y=\left(x^{2}-1\right)(x-2)^{3}$ is given by

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=(x-2)^{2}\left(5 x^{2}-4 x-3\right) . \tag{4}
\end{equation*}
$$

3. Find the gradient of the curve $y=\frac{x-1}{x^{2}-3}$ at the point where $x=2$.
4. A curve has equation $y=x^{3}-6 x^{2}+1$.

Find the coordinates of the point of inflection.
5. A potter is making an open topped vessel shaped as a right circular cylinder of radius r and height $2 r$.
(i) Find the rate at which the volume is increasing when the radius is 2 cm and increasing at a rate of $0.25 \mathrm{~cm} / \mathrm{s}$.
(ii) Given that the volume is increasing at a rate of $5 \pi \mathrm{~cm}^{3} / \mathrm{s}$ when the radius is 5 cm , find the rate at which the surface area is increasing at this point.
6. A curve has equation $y=3 x^{4}-8 x^{3}+6 x^{2}+1$.
(i) Find the coordinates of the stationary points and determine their nature.
(ii) Sketch the curve.
(iii) Find the values for x for which the curve is convex.
7. Three pieces of wire are cut and used to make two equal circles and a square. The total length of wire used is 100 cm . If the radius of each circle is $x \mathrm{~cm}$ and the side of the square $y \mathrm{~cm}$:
(i) Write down an equation that connects x and y and simplify as far as possible. [3]
(ii) Write down an expression for the total area enclosed (A) in terms of x and y. [2]
(iii) Eliminate y from your expression in (ii) using a substitution from your equation in (i) and hence express A in terms of x only.
(iv) Find a value for x that will make A a minimum.

