Edexcel A level Mathematics Differentiation

Topic assessment

- 1. Using the chain rule, differentiate $(x^2-1)^6$. [3]
- 2. Show that the gradient of $y = (x^2 1)(x 2)^3$ is given by

$$\frac{dy}{dx} = (x-2)^2 (5x^2 - 4x - 3).$$
 [4]

- 3. Find the gradient of the curve $y = \frac{x-1}{x^2-3}$ at the point where x=2. [5]
- 4. A curve has equation $y = x^3 6x^2 + 1$. Find the coordinates of the point of inflection. [4]
- 5. A potter is making an open topped vessel shaped as a right circular cylinder of radius r and height 2r.
 - (i) Find the rate at which the volume is increasing when the radius is 2 cm and increasing at a rate of 0.25 cm/s. [5]
 - (ii) Given that the volume is increasing at a rate of 5π cm³/s when the radius is 5 cm, find the rate at which the surface area is increasing at this point. [6]
- 6. A curve has equation $y = 3x^4 8x^3 + 6x^2 + 1$.
 - (i) Find the coordinates of the stationary points and determine their nature. [6]
 - (ii) Sketch the curve. [2]
 - (iii) Find the values for x for which the curve is convex. [3]
- 7. Three pieces of wire are cut and used to make two equal circles and a square. The total length of wire used is 100 cm. If the radius of each circle is *x* cm and the side of the square *y* cm:
 - (i) Write down an equation that connects x and y and simplify as far as possible. [3]
 - (ii) Write down an expression for the total area enclosed (A) in terms of x and y. [2]
 - (iii) Eliminate *y* from your expression in (ii) using a substitution from your equation in (i) and hence express *A* in terms of *x* only. [2]
 - (iv) Find a value for x that will make A a minimum. [5]

Total 50 marks

Solutions to topic assessment

1.
$$y = (x^2 - 1)^6$$

Let $u = x^2 - 1 \implies \frac{du}{dx} = 2x$
 $y = u^6 \implies \frac{dy}{du} = 6u^5$
Using the chain rule: $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = 6u^5 \times 2x$

[3]

2.
$$y = (x^2 - 1)(x - 2)^3$$

Let $u = x^2 - 1 \implies \frac{du}{dx} = 2x$
Let $v = (x - 2)^3 \implies \frac{dv}{dx} = 3(x - 2)^2$
Using the product rule: $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

Ing the product rule: $\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$ $= (x^2 - 1) \times 3(x - 2)^2 + (x - 2)^3 \times 2x$ $= (x - 2)^2 \left[3(x^2 - 1) + 2x(x - 2) \right]$ $= (x - 2)^2 (3x^2 - 3 + 2x^2 - 4x)$ $= (x - 2)^2 (5x^2 - 4x - 3)$

[4]

3.
$$y = \frac{x-1}{x^2-3}$$

Let $u = x-1 \implies \frac{du}{dx} = 1$
Let $v = x^2-3 \implies \frac{dv}{dx} = 2x$

Using the quotient rule:
$$\frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

$$= \frac{(x^2 - 3) \times 1 - (x - 1) \times 2x}{(x^2 - 3)^2}$$

$$= \frac{x^2 - 3 - 2x^2 + 2x}{(x^2 - 3)^2}$$

$$= \frac{-x^2 - 3 + 2x}{(x^2 - 3)^2}$$
When $x = 2$, gradient = $\frac{-2^2 - 3 + 2 \times 2}{(2^2 - 3)^2} = \frac{-4 - 3 + 4}{1^2} = -3$.

[5]

4.
$$y = x^3 - 6x^2 + 1$$

$$\frac{dy}{dx} = 3x^2 - 12x$$

$$\frac{d^2y}{dx^2} = 6x - 12$$

At point of inflection,
$$\frac{d^2y}{dx^2} = 0 \implies x = 2$$

When $x = 2$, $y = 8 - 24 + 1 = -15$

The point of inflection is (2, -15)

[4]

5. (i)
$$V = \pi r^2 h = \pi r^2 \times 2r = 2\pi r^3$$

$$\frac{dV}{dr} = 6\pi r^2$$

Using the chain rule:
$$\frac{dV}{dt} = \frac{dV}{dr} \times \frac{dr}{dt} = 6\pi r^2 \frac{dr}{dt}$$

When
$$r=2$$
 and $\frac{dr}{dt}=0.25$: $\frac{dV}{dt}=6\pi\times2^2\times0.25$
$$=6\pi$$

 $= 18.8 \text{ cm}^3/\text{s} (3 \text{ s.f.})$

[5]

(ii) Surface area
$$A = 2\pi rh + \pi r^2$$

= $2\pi r \times 2r + \pi r^2$
= $4\pi r^2 + \pi r^2$
= $5\pi r^2$

$$\frac{dA}{dr} = 10\pi r$$

Using the chain rule:
$$\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dV} \times \frac{dV}{dt}$$

$$=10\pi r \times \frac{1}{6\pi r^2} \frac{dV}{dt} = \frac{5}{3r} \frac{dV}{dt}$$

When
$$r = 5$$
 and $\frac{dV}{dt} = 5\pi$, $\frac{dA}{dt} = \frac{5}{3 \times 5} \times 5\pi = \frac{5\pi}{3}$
= 5.24 cm²/s (3 s.f.)

[6]

6. (i)
$$y = 3x^4 - 8x^3 + 6x^2 + 1$$

$$\frac{dy}{dx} = 12x^3 - 24x^2 + 12x$$

At stationary points, $12x^3 - 24x^2 + 12x = 0$

$$x(x^2-2x+1)=0$$

$$x(x-1)^2=0$$

$$x = 0$$
 or $x = 1$

When
$$x=0$$
, $y=1$

When
$$x=1$$
, $y=3-8+6+1=2$

$$\frac{d^2y}{dx^2} = 36x^2 - 48x + 12$$

When x = 0, $\frac{d^2y}{dx^2} > 0$ so (0, 1) is a local minimum point.

When
$$x = 1$$
, $\frac{d^2 y}{dx^2} = 0$

When x = 0.5, $\frac{dy}{dx} > 0$, and when x = 2, $\frac{dy}{dx} > 0$ so (1, 2) is a stationary point of inflection.

[6]

(ii)

[2]

(iii) The curve is convex where $\frac{d^2y}{dx^2} > 0$

$$36x^2 - 48x + 12 > 0$$

$$3x^2 - 4x + 1 > 0$$

$$(x-1)(3x-1)>0$$

so it is convex for $x < \frac{1}{3}$ and x > 1.

[3]

7. (i) Wire used for square = 4yWire used for each circle = $2\pi x$

Total length is 100 cm
$$\Rightarrow$$
 4 y + 4 π x = 100 \Rightarrow y + π x = 25

[3]

(ii) Area of square = y^2

Area of each circle $=\pi x^2$

Total area is given by $A = y^2 + 2\pi x^2$

[2]

(iii) From (i), $y = 25 - \pi x$

Substituting into expression in (ii): $A = (25 - \pi x)^2 + 2\pi x^2$

[2]

(iv) The expression for A is quadratic, with positive term in x^2 , so the turning point is a minimum point.

$$\frac{dA}{dx} = 2(25 - \pi x) \times -\pi + 4\pi x$$
$$= -2\pi(25 - \pi x) + 4\pi x$$

At stationary point, $-2\pi(25-\pi x)+4\pi x=0$

$$-25 + \pi x + 2x = 0$$

$$(2+\pi)x = 25$$

$$\chi = \frac{25}{2+\pi}$$

Therefore $x = \frac{25}{2+\pi}$ minimises the value of A.

[5]