Edexcel A level Mathematics Differentiation

Topic assessment

1. Using the chain rule, differentiate $\left(x^{2}-1\right)^{6}$.
2. Show that the gradient of $y=\left(x^{2}-1\right)(x-2)^{3}$ is given by

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=(x-2)^{2}\left(5 x^{2}-4 x-3\right) . \tag{4}
\end{equation*}
$$

3. Find the gradient of the curve $y=\frac{x-1}{x^{2}-3}$ at the point where $x=2$.
4. A curve has equation $y=x^{3}-6 x^{2}+1$.

Find the coordinates of the point of inflection.
5. A potter is making an open topped vessel shaped as a right circular cylinder of radius r and height $2 r$.
(i) Find the rate at which the volume is increasing when the radius is 2 cm and increasing at a rate of $0.25 \mathrm{~cm} / \mathrm{s}$.
(ii) Given that the volume is increasing at a rate of $5 \pi \mathrm{~cm}^{3} / \mathrm{s}$ when the radius is 5 cm , find the rate at which the surface area is increasing at this point.
6. A curve has equation $y=3 x^{4}-8 x^{3}+6 x^{2}+1$.
(i) Find the coordinates of the stationary points and determine their nature.
(ii) Sketch the curve.
(iii) Find the values for x for which the curve is convex.
7. Three pieces of wire are cut and used to make two equal circles and a square. The total length of wire used is 100 cm . If the radius of each circle is $x \mathrm{~cm}$ and the side of the square $y \mathrm{~cm}$:
(i) Write down an equation that connects x and y and simplify as far as possible. [3]
(ii) Write down an expression for the total area enclosed (A) in terms of x and y. [2]
(iii) Eliminate y from your expression in (ii) using a substitution from your equation in (i) and hence express A in terms of x only.
(iv) Find a value for x that will make A a minimum.

Total 50 marks

Edexcel A level Maths Differentiation Assessment solns

Solutions to topic assessment

1. $y=\left(x^{2}-1\right)^{6}$

Let $u=x^{2}-1 \Rightarrow \frac{d u}{d x}=2 x$
$y=u^{6} \Rightarrow \frac{d y}{d u}=6 u^{5}$
using the chain rule: $\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}=6 u^{5} \times 2 x$

$$
=12 x\left(x^{2}-1\right)^{5}
$$

2. $y=\left(x^{2}-1\right)(x-2)^{3}$

Let $u=x^{2}-1 \Rightarrow \frac{d u}{d x}=2 x$
Let $v=(x-2)^{3} \Rightarrow \frac{d v}{d x}=3(x-2)^{2}$
using the product rule: $\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}$

$$
\begin{aligned}
& =\left(x^{2}-1\right) \times 3(x-2)^{2}+(x-2)^{3} \times 2 x \\
& =(x-2)^{2}\left[3\left(x^{2}-1\right)+2 x(x-2)\right] \\
& =(x-2)^{2}\left(3 x^{2}-3+2 x^{2}-4 x\right) \\
& =(x-2)^{2}\left(5 x^{2}-4 x-3\right)
\end{aligned}
$$

3. $y=\frac{x-1}{x^{2}-3}$

Let $u=x-1 \Rightarrow \frac{d u}{d x}=1$
Let $v=x^{2}-3 \Rightarrow \frac{d v}{d x}=2 x$
using the quotient rule: $\frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$

$$
\begin{aligned}
& =\frac{\left(x^{2}-3\right) \times 1-(x-1) \times 2 x}{\left(x^{2}-3\right)^{2}} \\
& =\frac{x^{2}-3-2 x^{2}+2 x}{\left(x^{2}-3\right)^{2}} \\
& =\frac{-x^{2}-3+2 x}{\left(x^{2}-3\right)^{2}}
\end{aligned}
$$

When $x=2$, gradient $=\frac{-2^{2}-3+2 \times 2}{\left(2^{2}-3\right)^{2}}=\frac{-4-3+4}{1^{2}}=-3$.

Edexcel A level Maths Differentiation Assessment solns

4. $y=x^{3}-6 x^{2}+1$
$\frac{d y}{d x}=3 x^{2}-12 x$
$\frac{d^{2} y}{d x^{2}}=6 x-12$
At point of inflection, $\frac{d^{2} y}{d x^{2}}=0 \Rightarrow x=2$
When $x=2, y=8-24+1=-15$
The point of inflection is $(2,-15)$
5. (i) $v=\pi r^{2} h=\pi r^{2} \times 2 r=2 \pi r^{3}$

$$
\frac{d v}{d r}=6 \pi r^{2}
$$

using the chain rule: $\frac{d v}{d t}=\frac{d v}{d r} \times \frac{d r}{d t}=6 \pi r^{2} \frac{d r}{d t}$
When $r=2$ and $\frac{d r}{d t}=0.25: \frac{d v}{d t}=6 \pi \times 2^{2} \times 0.25$

$$
\begin{aligned}
& =6 \pi \\
& =18.8 \mathrm{~cm}^{3} / \mathrm{s} \quad(3 \mathrm{~s} . f .)
\end{aligned}
$$

(ii) Surface area $A=2 \pi r h+\pi r^{2}$

$$
\begin{aligned}
& =2 \pi r \times 2 r+\pi r^{2} \\
& =4 \pi r^{2}+\pi r^{2} \\
& =5 \pi r^{2}
\end{aligned}
$$

$\frac{d A}{d r}=10 \pi r$
using the chain rule: $\frac{d A}{d t}=\frac{d A}{d r} \times \frac{d r}{d v} \times \frac{d v}{d t}$

$$
=10 \pi r \times \frac{1}{6 \pi r^{2}} \frac{d v}{d t}=\frac{5}{3 r} \frac{d v}{d t}
$$

When $r=5$ and $\frac{d v}{d t}=5 \pi, \frac{d A}{d t}=\frac{5}{3 \times 5} \times 5 \pi=\frac{5 \pi}{3}$

$$
=5.24 \mathrm{~cm}^{2} / \mathrm{s}(3 \mathrm{~s} . f .)
$$

Edexcel A level Maths Differentiation Assessment solns

6. (i) $y=3 x^{4}-8 x^{3}+6 x^{2}+1$
$\frac{d y}{d x}=12 x^{3}-24 x^{2}+12 x$
At stationary points, $12 x^{3}-24 x^{2}+12 x=0$

$$
\begin{aligned}
& x\left(x^{2}-2 x+1\right)=0 \\
& x(x-1)^{2}=0 \\
& x=0 \text { or } x=1
\end{aligned}
$$

When $x=0, y=1$
When $x=1, y=3-8+6+1=2$
$\frac{d^{2} y}{d x^{2}}=36 x^{2}-48 x+12$
When $x=0, \frac{d^{2} y}{d x^{2}}>0$ so $(0,1)$ is a local minimum point.
When $x=1, \frac{d^{2} y}{d x^{2}}=0$
When $x=0.5, \frac{d y}{d x}>0$, and when $x=2, \frac{d y}{d x}>0$ so $(1,2)$ is a stationary point of inflection.
(ii)

(iii) The curve is convex where $\frac{d^{2} y}{d x^{2}}>0$

$$
\begin{aligned}
& 36 x^{2}-48 x+12>0 \\
& 3 x^{2}-4 x+1>0 \\
& (x-1)(3 x-1)>0
\end{aligned}
$$

so it is convex for $x<\frac{1}{3}$ and $x>1$.
7. (i) Wire used for square $=4 y$ Wire used for each circle $=2 \pi x$

Edexcel A level Maths Differentiation Assessment solns

Total length is $100 \mathrm{~cm} \Rightarrow 4 y+4 \pi x=100$
$\Rightarrow y+\pi x=25$
(ii) Area of square $=y^{2}$

Area of each circle $=\pi x^{2}$
Total area is given by $A=y^{2}+2 \pi x^{2}$
(iii) From (i), $y=25-\pi x$
substituting into expression in (ii): $A=(25-\pi x)^{2}+2 \pi x^{2}$
(iv) The expression for A is quadratic, with positive term in x^{2}, so the turning point is a minimum point.

$$
\begin{aligned}
\frac{d A}{d x} & =2(25-\pi x) \times-\pi+4 \pi x \\
& =-2 \pi(25-\pi x)+4 \pi x
\end{aligned}
$$

At stationary point, $-2 \not t(25-\pi x)+4 \not t x=0$

$$
\begin{aligned}
& -25+\pi x+2 x=0 \\
& (2+\pi) x=25 \\
& x=\frac{25}{2+\pi}
\end{aligned}
$$

Therefore $x=\frac{25}{2+\pi}$ minimises the value of A.

