Edexcel A level Maths Differential equations

Topic assessment

1. Find y in terms of x given that $\frac{\mathrm{d} y}{\mathrm{~d} x}=x(y-1)$.
2. Solve $(x-1) \frac{\mathrm{d} y}{\mathrm{~d} x}=x y$ for $x>1$ and $y>0$, given that $y=1$ when $x=3$.
3. Obtain a particular solution to $\left(1-\mathrm{e}^{2 y}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{e}^{y}$ given that $y=0$ when $x=2$. (There is no need to express y in terms of x).
4. Find an expression for y in terms of x given that $x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}-y^{2}=0$.
5. At time t seconds the rate of increase in the concentration of flesh eating bugs in a controlled environment is proportional to the concentration C of bugs present.
Initially $C=100$ bugs and after 2 seconds there are five times as many.
(i) Write down a differential equation connecting $\frac{\mathrm{d} C}{\mathrm{~d} t}, C$ and t and hence find an expression for C in terms of t.
(ii) How many bugs are present after 5 seconds? [2]
(iii) When will the number of bugs exceed 5000 ?
(iv) Find the time at which the concentration of bugs has increased by 50% of the initial concentration.
6. Water is pouring out of a small hole in the bottom of a conical container of height 25 cm . Initially the container is full.
The rate at which the height x of the water remaining in the container is given by

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=-\frac{50}{\pi} x^{-\frac{3}{2}} .
$$

(i) Solve the differential equation to find x in terms of t.
(ii) How long does it take for the container to empty completely?

Total 40 marks

Edexcel A level Maths Diff eqns Assessment solns

Solutions to topic assessment

1. $\frac{d y}{d x}=x(y-1)$
$\int \frac{1}{y-1} d y=\int x d x$
$\ln |y-1|=\frac{1}{2} x^{2}+c$ Replacing e^{c} with A
$y-1=e^{\frac{1}{2} x^{2}+c}=A e^{\frac{1}{2} x^{2}} 00$
$y=1+A e^{\frac{1}{2} x^{2}}$
2. $(x-1) \frac{d y}{d x}=x y$
$\int \frac{1}{y} d y=\int \frac{x}{x-1} d x=\int\left(\frac{x-1}{x-1}+\frac{1}{x-1}\right) d x=\int\left(1+\frac{1}{x-1}\right) d x$
$\ln y=x+\ln (x-1)+c$
$\ln \left(\frac{y}{x-1}\right)=x+c$
When $x=3, y=1 \Rightarrow \ln \left(\frac{1}{2}\right)=3+c \Rightarrow c=\ln \left(\frac{1}{2}\right)-3=-3-\ln 2$
$\ln \left(\frac{y}{x-1}\right)=x-3-\ln 2$
$\ln \left(\frac{2 y}{x-1}\right)=x-3$
$\frac{2 y}{x-1}=e^{x-3}$
$y=\frac{(x-1) e^{x-3}}{2}$
3. $\left(1-e^{2 y}\right) \frac{d y}{d x}=e^{y}$
$\int\left(1-e^{2 y}\right) e^{-y} d y=\int 1 d x$
$\int\left(e^{-y}-e^{y}\right) d y=\int 1 d x$
$-e^{-y}-e^{y}=x+c$
When $x=2, y=0 \Rightarrow-1-1=2+c \Rightarrow c=-4$
$-e^{-y}-e^{y}=x-4$
$e^{y}+e^{-y}=4-x$

Edexcel A level Maths Diff eqns Assessment solns

4. $x^{2} \frac{d y}{d x}-y^{2}=0$
$x^{2} \frac{d y}{d x}=y^{2}$
$\int \frac{1}{y^{2}} d y=\int \frac{1}{x^{2}} d x$
$-\frac{1}{y}=-\frac{1}{x}+c$
$\frac{1}{y}=\frac{1}{x}-c=\frac{1-c x}{x}$
$y=\frac{x}{1-c x} \bigcirc>$
An equivalent solution is
$y=\frac{x}{1+k x}$, since $-c$ can be replaced by k.
5. (i) $\frac{d c}{d t}=k c$

$$
\begin{aligned}
& \int \frac{1}{c} d c=\int k d t \\
& \ln c=k t+c \\
& W h e n t=0, c=100 \Rightarrow \ln 100=c \\
& \ln c=k t+\ln 100 \\
& \ln \frac{c}{100}=k t \\
& \frac{c}{100}=e^{k t} \\
& c=100 e^{k t} \\
& W h e n t=2, c=500 \Rightarrow 500=100 e^{2 k} \Rightarrow e^{2 k}=5 \Rightarrow e^{k}=\sqrt{5} \\
& c=100 e^{k t}=100\left(e^{k}\right)^{t}=100\left(5^{\frac{1}{2}}\right)^{t} \\
& c=100 \times 5^{\frac{1}{2} t}
\end{aligned}
$$

(ii) When $t=5, c=100 \times 5^{2.5}=5590$ (to nearest whole number).
((ií) $100 \times 5^{\frac{1}{2} t}>5000$
$5^{\frac{1}{2} t}>50$
$\frac{1}{2} t \ln 5>\ln 50$
$t>4.86$
After 4.86 seconds.

Edexcel A level Maths Diff eqns Assessment solns

(iv) $100 \times 5^{\frac{1}{2} t}>150$

$$
\begin{aligned}
& 5^{\frac{1}{2} t}>1.5 \\
& \frac{1}{2} t \ln 5>\ln 1.5 \\
& t>0.504 \\
& \text { After } 0.504 \text { seconds. }
\end{aligned}
$$

6. (i) $\int \pi x^{\frac{3}{2}} d x=\int-50 d t$
$\frac{2}{5} \pi x^{\frac{5}{2}}=-50 t+c$
Whent $=0, x=25 \Rightarrow \frac{2}{5} \pi \times 25^{\frac{5}{2}}=c \Rightarrow c=1250 \pi$
$\frac{2}{5} \pi x^{\frac{5}{2}}=1250 \pi-50 t$
$x^{\frac{5}{2}}=3125-\frac{125}{\pi} t$
$x=\left(3125-\frac{125}{\pi} t\right)^{\frac{2}{5}}$
(iii) When $x=0, \frac{125}{\pi} t=3125 \Rightarrow t=25 \pi=78.5$ seconds. it takes 78.5 seconds (3 s.f.)
