## Edexcel A level Mathematics Further algebra

## Section 1: The general binomial expansion

Notes and Examples
These notes contain subsections on

- The general binomial expansion
- Harder examples
- Finding approximations


## The general binomial expansion

You have already met the binomial expansion, which can be used to expand the expression $(1+x)^{n}$, where $n$ is a positive integer:

$$
(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\ldots
$$

When $n$ is a positive integer, this expansion always has a finite number of terms, since eventually there will be a factor of 0 in the numerator.

However, this expansion can also be used for any value of $n$, including negative numbers and fractions. In cases where $n$ is not a positive integer, there will never be a zero coefficient, so the expansion will have an infinite number of terms.

This means that the expansion is only valid for cases where values of $x^{r}$ decrease as $r$ increases, i.e. for $-1<x<1$. Otherwise, the terms of the expansion would get bigger and bigger and the sum of the terms would increase without limit.


## Example 1

Expand $(1+x)^{-3}$ up to the term in $x^{3}$, stating the values of $x$ for which the expansion is valid.

## Solution

$$
\begin{aligned}
(1+x)^{-3} & =1-3 x+\frac{-3 \times-4}{1 \times 2} x^{2}+\frac{-3 \times-4 \times-5}{1 \times 2 \times 3} x^{3}+\ldots \\
& =1-3 x+6 x^{2}-10 x^{3}+\ldots
\end{aligned}
$$

The expansion is valid for $-1<x<1$.

The expansion still works when the second term in the bracket is a multiple of $x$. You just need to replace $x$ in the expansion with the multiple of $x$, and remember that, for example, $(2 x)^{3}$ is not $2 x^{3}$ but $8 x^{3}$.

## Edexcel A level Maths Algebra 1 Notes and Examples

Also, be careful with the range of $x$ for which the expansion is valid in such cases. Look carefully at Example 2 below.

## Example 2

Expand $\sqrt{1+2 x}$ up to the term in $x^{3}$, stating the values of $x$ for which the expansion is valid.

## Solution

$$
\begin{aligned}
\sqrt{1+2 x} & =(1+2 x)^{\frac{1}{2}} \\
& =1+\frac{1}{2} \times 2 x+\frac{\frac{1}{2} \times-\frac{1}{2}}{1 \times 2}(2 x)^{2}+\frac{\frac{1}{2} \times-\frac{1}{2} \times-\frac{3}{2}}{1 \times 2 \times 3}(2 x)^{3}+\ldots \\
& =1+x-\frac{1}{8} \times 4 x^{2}+\frac{1}{16} \times 8 x^{3}+\ldots \\
& =1+x-\frac{1}{2} x^{2}+\frac{1}{2} x^{3}+\ldots
\end{aligned}
$$

The expansion is valid for $-1<2 x<1$
i.e. $\quad-\frac{1}{2}<x<\frac{1}{2}$.

When the second term involves a negative, be very careful with signs.

## Example 3

Find the first four terms in the expansion of $\frac{1}{1-x}$, stating the values of $x$ for which the expansion is valid.

## Solution

$$
\begin{aligned}
\frac{1}{1-x} & =(1-x)^{-1} \\
& =1-1(-x)+\frac{-1 \times-2}{1 \times 2}(-x)^{2}+\frac{-1 \times-2 \times-3}{1 \times 2 \times 3}(-x)^{3}+\ldots \\
& =1+x+x^{2}+x^{3}+\ldots
\end{aligned}
$$

The expansion is valid for $-1<x<1$.

## Harder examples

You can expand expressions like $(a+b)^{n}$ by taking out a factor $a^{n}$ first like this:

$$
(a+b)^{n}=a^{n}\left(1+\frac{b}{a}\right)^{n} .
$$

You can then expand the expression in the bracket using the binomial expansion. Be very careful - it is easy to make mistakes in this kind of work.

## Edexcel A level Maths Algebra 1 Notes and Examples

This method is shown in the next example.

## Example 4

Find the first four terms in the expansion of $\sqrt{4+x}$, stating the values of $x$ for which the expansion is valid.

## Solution

$$
\begin{aligned}
\sqrt{4+x} & =(4+x)^{\frac{1}{2}}=4^{\frac{1}{2}}\left(1+\frac{x}{4}\right)^{\frac{1}{2}}=2\left(1+\frac{x}{4}\right)^{\frac{1}{2}} \\
\left(1+\frac{x}{4}\right)^{\frac{1}{2}} & =1+\frac{1}{2}\left(\frac{x}{4}\right)+\frac{\frac{1}{2} \times-\frac{1}{2}}{1 \times 2}\left(\frac{x}{4}\right)^{2}+\frac{\frac{1}{2} \times-\frac{1}{2} \times-\frac{3}{2}}{1 \times 2 \times 3}\left(\frac{x}{4}\right)^{3}+\ldots \\
& =1+\frac{x}{8}-\left(\frac{1}{8} \times \frac{x^{2}}{16}\right)+\left(\frac{1}{16} \times \frac{x^{3}}{64}\right)+\ldots \\
& =1+\frac{x}{8}-\frac{x^{2}}{128}+\frac{x^{3}}{1024}+\ldots \\
2\left(1+\frac{x}{4}\right)^{\frac{1}{2}} & =2\left(1+\frac{x}{8}-\frac{x^{2}}{128}+\frac{x^{3}}{1024}+\ldots\right) \\
& =2+\frac{x}{4}-\frac{x^{2}}{64}+\frac{x^{3}}{512}+\ldots
\end{aligned}
$$

The expansion is valid for $\quad-1<\frac{1}{4} x<1$
i.e. $\quad-4<x<4$

The next example shows a more complicated expansion.


## Example 5

Find the first three terms of the expansion of $\sqrt{\frac{1+2 x}{1-x}}$, stating the values of $x$ for which the expansion is valid.

## Solution

$$
\begin{aligned}
\sqrt{\frac{1+2 x}{1-x}} & =(1+2 x)^{\frac{1}{2}}(1-x)^{-\frac{1}{2}} \\
(1+2 x)^{\frac{1}{2}} & =1+\frac{1}{2} \times 2 x+\frac{\frac{1}{2} \times-\frac{1}{2}}{1 \times 2}(2 x)^{2}+\ldots \\
& =1+x-\frac{1}{8} \times 4 x^{2}+\ldots \\
& =1+x-\frac{1}{2} x^{2}+\ldots
\end{aligned}
$$

## Edexcel A level Maths Algebra 1 Notes and Examples

$$
\begin{aligned}
& \begin{aligned}
(1-x)^{-\frac{1}{2}} & =1-\frac{1}{2} \times(-x)+\frac{-\frac{1}{2} \times-\frac{3}{2}}{1 \times 2}(-x)^{2}+\ldots \\
=1+\frac{1}{2} x & +\frac{3}{8} x^{2}+\ldots
\end{aligned} \\
& \begin{aligned}
(1+2 x)^{\frac{1}{2}}(1-x)^{-\frac{1}{2}} & =\left(1+x-\frac{1}{2} x^{2}+\ldots\right)\left(1+\frac{1}{2} x+\frac{3}{8} x^{2}+\ldots\right) \\
& =1\left(1+\frac{1}{2} x+\frac{3}{8} x^{2}\right)+x\left(1+\frac{1}{2} x\right)-\frac{1}{2} x^{2}(1)+\ldots \\
& =1+\frac{1}{2} x+\frac{3}{8} x^{2}+x+\frac{1}{2} x^{2}-\frac{1}{2} x^{2}+\ldots \\
& =1+\frac{3}{2} x+\frac{3}{8} x^{2}+\ldots
\end{aligned} \\
& \text { The expansion for }(1+2 x)^{\frac{1}{2}} \text { is valid for } \\
& \text { i.e. } \quad-1<2 x<1
\end{aligned}
$$

For both conditions to be true, then $x$ must satisfy the condition $-\frac{1}{2}<x<\frac{1}{2}$.

## Finding approximations

The binomial expansion can be used for finding the approximate value of a function, by substituting an appropriate value for $x$ and evaluating the first few terms of the expansion. The more terms are used, the better the approximation.

## Example 6

(i) Find the first four terms of the binomial expansion of $\sqrt[3]{(8+x)}$.
(ii) Use your result from (i) to find the value of $\sqrt[3]{8.1}$ correct to six decimal places.

## Solution

(i) $\sqrt[3]{(8+x)}=(8+x)^{\frac{1}{3}}=8^{\frac{1}{3}}\left(1+\frac{x}{8}\right)^{\frac{1}{3}}=2\left(1+\frac{x}{8}\right)^{\frac{1}{3}}$

$$
\begin{aligned}
\left(1+\frac{x}{8}\right)^{\frac{1}{3}} & =1+\frac{1}{3}\left(\frac{x}{8}\right)+\frac{\frac{1}{3} \times-\frac{2}{3}}{2!}\left(\frac{x}{8}\right)^{2}+\frac{\frac{1}{3} \times-\frac{2}{3} \times-\frac{5}{3}}{3!}\left(\frac{x}{8}\right)^{3}+\ldots \\
& =1+\frac{x}{24}-\frac{x^{2}}{576}+\frac{5 x^{3}}{41472}+\ldots \\
2\left(1+\frac{x}{8}\right)^{\frac{1}{3}} & =2\left(1+\frac{x}{24}-\frac{x^{2}}{576}+\frac{5 x^{3}}{41472}+\ldots\right) \\
& =2+\frac{x}{12}-\frac{x^{2}}{288}+\frac{5 x^{3}}{20736}+\ldots
\end{aligned}
$$

(ii) Let $x=0.1$

$$
\sqrt[3]{(8+0.1}=2+\frac{0.1}{12}-\frac{0.1^{2}}{288}+\frac{0.1^{3}}{20736}+\ldots
$$

## Edexcel A level Maths Algebra 1 Notes and Examples

Using the first two terms

$$
\sqrt[3]{8.1} \approx 2+\frac{0.1}{12}=2.0083333
$$

Using the first three terms $\quad \sqrt[3]{8.1} \approx 2+\frac{0.1}{12}-\frac{0.1^{2}}{288}=2.0082986$
Using the first four terms $\quad \sqrt[3]{8.1} \approx 2+\frac{0.1}{12}-\frac{0.1^{2}}{288}+\frac{5 \times 0.1^{3}}{20736}=2.0082988$
Adding the fourth term does not affect the sixth decimal place so $\sqrt[3]{8.1}=2.008299$ correct to six decimal places.

