Edexcel A level Maths Sequences and series

Section 3: Geometric sequences and series

Section test

1. For the geometric sequence $2,6,18,54 \ldots$,

What is the $8^{\text {th }}$ term of the sequence?
What is the sum of the first 10 terms of the sequence?
What is the first term which is greater than 100000 ?
2. For the geometric sequence $24,-12,6,-3 \ldots$.

What is the $7^{\text {th }}$ term of the sequence?
What is the sum to infinity of the sequence?
After how many terms is the sum of the sequence within 1% of the sum to infinity of the sequence?
3. A geometric sequence has $3^{\text {rd }}$ term 36 and $5^{\text {th }}$ term 81 . Find the first term, a, and the common ratio, r.
4. A geometric sequence has first term 5 and sum to infinity 6.25 . What is the common ratio of the sequence?
5. Anna’s grandmother gives her $£ 15$ for her $10^{\text {th }}$ birthday. She tells Anna that she will increase the amount she gives her for her birthday by $£ 5$ each year until she is 18.

Amy's grandmother also gives her $£ 15$ for her $10^{\text {th }}$ birthday. She tells Amy that she will increase the amount she gives her for her birthday by 25% each year until she is 18 .

On which birthday is Amy first given more than Anna?
How much more money has Amy received in total than Anna by the time the girls are 18 ? (Give your answer to the nearest pound).

Edexcel A level Maths Series 3 section test solutions

Solutions to section test

1. First term $a=2$
common ratio $r=3$
$8^{\text {th }}$ term $=a r^{7}=2 \times 3^{7}=4374$
$S_{10}=\frac{a\left(r^{10}-1\right)}{r-1}=\frac{2\left(3^{10}-1\right)}{3-1}=59048$
$n^{\text {th }}$ term $=a r^{n-1}$
$2 \times 3^{n-1}>100000$
$3^{n-1}>50000$
$(n-1) \log 3>\log 50000$
$n-1>9.8$
$n>10.8$
The first term which is greater than 100000 is the $11^{\text {th }}$ term.
2. First term $a=24$
common ratio $r=-0.5$
$7^{\text {th }}$ term $=a r^{6}=24 \times 0.5^{6}=0.375$
$S_{\infty}=\frac{a}{1-r}=\frac{24}{1-(-0.5)}=\frac{24}{1.5}=16$
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}=\frac{24\left(1-(0.5)^{n}\right)}{1-(-0.5)}=16\left(1-(0.5)^{n}\right)$
$\left|\frac{16\left(1-(-0.5)^{n}\right)-16}{16}\right|<0.01$
$\left|-(-0.5)^{n}\right|<0.01$
$0.5^{n}<0.01$
$n \log 0.5<\log 0.01$
$n>\frac{\log 0.01}{\log 0.5}$
$n>6.6$
so the sum is first within 1% of the sum to infinity after 7 terms.
3. $3^{\text {rd }}$ term $=36$
$\Rightarrow a r^{2}=36$
(1)
$5^{\text {th }}$ term $=81 \quad \Rightarrow a r^{4}=81$
(2)

Dividing (2) by (1): $r^{2}=\frac{81}{36}=\frac{9}{4} \Rightarrow r=\frac{3}{2}$

Edexcel A level Maths Series 3 section test solutions

Substítuting into (1): $a\left(\frac{3}{2}\right)^{2}=36$

$$
a=36 \times \frac{4}{9}=16
$$

The first term is 16 and the common ratio is $\frac{3}{2}$.
4. $S_{\infty}=\frac{a}{1-r}$
$6.25=\frac{5}{1-r}$
$1-r=0.8$
$r=0.2$
The common ratio is 0.2 .
5. Anna's presents form an arithmetic series with $a=15$ and $d=5$.

Amy's presents form a geometric series with $a=15$ and $r=1.25$.

10th birthday	Anna E15	Amy 1515
11 ${ }^{\text {th }}$ birthday	Anna E20	Amy E18.75
$12^{\text {th }}$ birthday	Anna E25	Amy E23.48
$13^{\text {th }}$ birthday	Anna E30	Amy E29.30
$14^{\text {th }}$ birthday	Anna E35	Amy E36.62

Amy is first given more than Anna on the $14^{\text {th }}$ birthday.

There are g birthdays from age 10 to 18.
Total for Anna $=\frac{1}{2} n[2 a+(n-1) d]=\frac{1}{2} \times 9[30+8 \times 5]=£ 315$
Total for Amy $=\frac{a\left(r^{n}-1\right)}{r-1}=\frac{15\left(1.25^{9}-1\right)}{1.25-1}=£ 387$ to nearest pound
Amy has received $£ 72$ more than Anna.

