Edexcel A level Maths Sequences and series

Section 1: Definitions and notation

Section test

Questions 1 to 3 are about the following sequences:
A $\quad 2,5,8,11,14, \ldots$
B $\quad 3,6,12,24,48, \ldots$
C $\quad 1,1,2,3,5,8, \ldots$
D $\quad 1,3,5,3,1,3, \ldots$

1) Which of the above sequences is an arithmetic sequence?

Which of the above sequences is a geometric sequence?
Which of the above sequences could be a periodic sequence with period less than 5 ?
2) A sequence is defined by $a_{k+1}=2 a_{k}-1, a_{1}=2$

Find the $6^{\text {th }}$ term of this sequence.
Find $\sum_{1}^{5} a_{k}$.
3) A sequence is defined by $a_{k}=k(k+1)$

Find the $5^{\text {th }}$ term of this sequence.
Find $\sum_{1}^{4} a_{k}$.

Questions 4 to 6 are about the sequence

$$
1,-2,4,-8,16,-32
$$

4) The sequence is defined inductively by
(a) $a_{k+1}=a_{k}-2, a_{1}=1$
(b) $a_{k+1}=2 a_{k}, a_{1}=1$
(c) $a_{k+1}=a_{k}-2^{k}, a_{1}=1$
(d) $a_{k+1}=-2 a_{k}, a_{1}=1$
5) The sequence is defined deductively by
(a) $a_{k}=-2^{k-1}$
(b) $a_{k}=(-2)^{k-1}$
(c) $a_{k}=(-2)^{k}$
(d) $a_{k}=-2^{k}$
6) Find $\sum_{4}^{6} a_{k}$.

Edexcel A level Maths Sequences 1 section test solns

Solutions to section test

1) The terms in sequence A go up by 3 each time, so A is an arithmetic sequence.

The terms in B are obtained by multiplying the previous term by 2, so B is a geometric sequence.

The $5^{\text {th }}$ and $6^{\text {th }}$ terms in sequence D are the same as the $1^{\text {st }}$ and $2^{\text {nd }}$ terms, so sequence D could be periodic with period 4.
2) $a_{1}=2$
$a_{2}=2 a_{1}-1=2 \times 2-1=3$
$a_{3}=2 a_{2}-1=2 \times 3-1=5$
$a_{4}=2 a_{3}-1=2 \times 5-1=9$
$a_{5}=2 a_{4}-1=2 \times 9-1=17$
$a_{6}=2 a_{5}-1=2 \times 17-1=33$
using the terms from above,
$\sum_{1}^{5} a_{k}=2+3+5+9+17=36$.
3) Putting $k=5: \quad a_{5}=5(5+1)=5 \times 6=30$

$$
\begin{aligned}
\sum_{1}^{4} a_{k} & =(1 \times 2)+(2 \times 3)+(3 \times 4)+(4 \times 5) \\
& =2+6+12+20 \\
& =40
\end{aligned}
$$

4) Each term is obtained by multiplying the previous term by -2 , so the inductive definition is $a_{k+1}=-2 a_{k}, a_{1}=1$.
5) Since each term is obtained by multiplying the previous term by -2 , the deductive formula involves a power of -2 . Since the first term is 1 , the terms of the sequence are given by $(-2)^{0},(-2)^{1},(-2)^{2}, \ldots$
The deductive definition is therefore $a_{k}=(-2)^{k-1}$.
6) $\sum_{4}^{6} a_{k}=a_{4}+a_{5}+a_{6}=-8+16-32=-24$

