Section 1: Functions, graphs and transformations

Section test

1. The diagram below represents a mapping which is:

(a) one-to-one
(b) one-to-many
(c) many-to-one
(d) many-to-many
2. The function f is defined by:
f: $x \rightarrow 1-x^{2}$, where $-1 \leq x \leq 1$.
What is the range of the function?
3. The function g is defined by:

$$
\mathrm{g}: x \rightarrow x^{2}-x-6, x \in \mathbb{R}
$$

What is the value of $g(-4)$?
When $\mathrm{g}(x)=6$, what are the possible values of x ?
4. The graph below represents the function $\mathrm{f}(x)$.

The graphs $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S below represent various transformations of the function $\mathrm{f}(x)$.

Edexcel A level Maths Functions 1 section test solutions

Which of the graphs represents the function $\mathrm{f}(-x)$?
Which of the graphs represents the function $\mathrm{f}(2 x)$?
Which of the graphs represents the function $\mathrm{f}(x+1)-2$?
Which of the graphs represents the function $1-\mathrm{f}(x)$?
5. The graph of $y=\sin x$ is first translated 1 unit to the left, then stretched parallel to the x axis with scale factor 2 . The equation of the new graph is
(a) $y=\sin (2 x+1)$
(b) $y=\sin \left(\frac{1}{2} x+1\right)$
(c) $y=\sin \frac{1}{2}(x+1)$
(d) $y=\sin 2(x+1)$
6. The graph of $y=\frac{1}{x}$ is first translated 2 units to the right, then reflected in the x-axis, then translated 1 unit vertically upwards. The equation of the new graph is
(a) $y=\frac{1}{x+2}+1$
(b) $y=1-\frac{1}{x+2}$
(c) $y=\frac{1}{x-2}+1$
(d) $y=1-\frac{1}{x-2}$
7. The graph of $y=x^{2}-2 x+3$ is first reflected in the y axis, then translated 2 units vertically downwards, then stretched parallel to the y-axis with scale factor 3 . What is the equation

Edexcel A level Maths Functions 1 section test solutions

of the new graph?
8. Describe the transformations required to obtain the graph of $y=(2 x-1)^{2}$ from the graph of $y=x^{2}$.
9. Describe the transformations required to obtain the graph of $y=2 \cos (x+1)-3$ from the graph of $y=\cos x$.
10. Describe the transformations required to obtain the graph of $y=1-(x+2)^{3}$ from the graph of $y=x^{3}$.

Edexcel A level Maths Functions 1 section test solutions

Solutions to section test

1. Each element in the domain is mapped to just one point in the co-domain, but some elements in the co-domain are images of more than one point in the domain. So this mapping is many-to-one.
2. The smallest possible value of $f(x)$ where $-1 \leq x \leq 1$ is 0 , when $x= \pm 1$.

The greatest possible value of $f(x)$ where $-1 \leq x \leq 1$ is 1 , when $x=0$.
so the range of the function is given by $y: 0 \leq y \leq 1$.
3. $g(x)=x^{2}-x-6$
$g(-4)=(-4)^{2}-(-4)-6$
$=16+4-6$

$$
=14
$$

$g(x)=x^{2}-x-6$
$x^{2}-x-6=6$
$x^{2}-x-12=0$
$(x-4)(x+3)=0$
$x=4$ or $x=-3$
4. The graph of $y=f(-x)$ is obtained from the graph of $y=f(x)$ by a reflection in the y-axis. This is graph R.

The graph of $y=f(2 x)$ is obtained from the graph of $y=f(x)$ by a stretch of scale factor $\frac{1}{2}$ parallel to the x-axis. This is graph P.

The graph of $y=f(x+1)-2$ is obtained from the graph of $y=f(x)$ by a translation through $\binom{-1}{-2}$. This is graph Q.

The graph of $y=1-f(x)$ is obtained from the graph of $y=f(x)$ by a reflection in the x-axis and a translation of 1 unit vertically upwards. This is graph s.
5. $y=\sin x$

Translating 1 unit to the left means $f(x)$ becomes $f(x+1)$.
This gives $y=\sin (x+1)$.
A stretch parallel to the x-axis with scale factor 2 means $f(x)$ becomes $f\left(\frac{1}{2} x\right)$.
This gives $y=\sin \left(\frac{1}{2} x+1\right)$

Edexcel A level Maths Functions 1 section test solutions
6. $y=\frac{1}{x}$

Translation of 2 units to the right means $f(x)$ becomes $f(x-2)$.
This gives $y=\frac{1}{x-2}$.
Reflection in the x-axis means $f(x)$ becomes - $f(x)$
This gives $y=-\frac{1}{x-2}$
Translation of 1 unit vertically upwards means $f(x)$ becomes $f(x)+1$.
This gives $y=-\frac{1}{x-2}+1$, or $y=1-\frac{1}{x-2}$.
7. $y=x^{2}-2 x+3$

Reflection in the y-axis means $f(x)$ becomes $f(-x)$.
This gives $y=(-x)^{2}-2(-x)+3=x^{2}+2 x+3$.
Translation of 2 units vertically downwards means $f(-x)$ becomes $f(-x)-2$.
This gives $y=x^{2}+2 x+3-2=x^{2}+2 x+1$.
stretched parallel to the y-axis with scale factor 3 means $f(-x)-2$ becomes
$3(f(-x)-2)$.
This gives $y=3\left(x^{2}+2 x+1\right)=3 x^{2}+6 x+3$.
8. Start with $y=x^{2}$

Replace x with $(x-1)$ to give $y=(x-1)^{2}$. This is a horizontal translation of 1 unit to the right.
Replace x with $2 x$ to give $y=(2 x-1)^{2}$. This is a stretch parallel to the x-axis, scale factor $\frac{1}{2}$.
9. Start with $y=\cos x$.

Replace x with $(x+1)$ to give $y=\cos (x+1)$. This is a horizontal translation of 1 unit to the left.
Replace $f(x)$ with $2 f(x)$ to give $y=2 \cos (x+1)$. This is a stretch of scale factor 2 parallel to the y-axis.
Replace $f(x)$ with $f(x)-3$ to give $y=2 \cos (x+1)-3$. This is a vertical translation of 3 units downwards.
10. Start with $y=x^{3}$.

Replace x with $(x+2)$ to give $y=(x+2)^{3}$. This is a horizontal translation of 2 units to the left.
Replace $f(x)$ with $-f(x)$ to give $y=-(x+2)^{3}$. This is a reflection in the x-axis.
Replace $f(x)$ with $f(x)+1$ to give $y=1-(x+2)^{3}$. This is a vertical translation of 1 unit upwards.

