Edexcel A level Mathematics Functions

Section 2: Composite and inverse functions

Notes and Examples

These notes contain subsections on

- Composite functions
- Inverse functions

Composite functions

The important thing to remember when finding a composite function is the order in which the functions are written: $\operatorname{fg}(x)$ means first apply the function g to x, then apply the function f to the result.

Example 1

The functions f, g and h are defined by:

$$
\begin{aligned}
& \mathrm{f}(x)=x+1 \\
& \mathrm{~g}(x)=x^{2} \\
& \mathrm{~h}(x)=3 x
\end{aligned}
$$

Find the following composite functions:
(i) $\operatorname{fg}(x)$
(ii) $\operatorname{gh}(x)$
(iii) $\operatorname{hgf}(x)$
(iv) $\quad \mathrm{f}^{2}(x)$

Solution
(i) $\mathrm{fg}(x)=\mathrm{f}[\mathrm{g}(x)]$

$$
\begin{aligned}
& =\mathrm{f}\left(x^{2}\right) \\
& =x^{2}+1
\end{aligned}
$$

(ii) $\operatorname{gh}(x)=\mathrm{g}[\mathrm{h}(x)]$

$$
\begin{aligned}
& =\mathrm{g}(3 x) \\
& =(3 x)^{2} \\
& =9 x^{2}
\end{aligned}
$$

(iii) $\operatorname{hgf}(x)=\operatorname{hg}[f(x)]$

$$
=\mathrm{h}[\mathrm{~g}(x+1)]
$$

$$
=\mathrm{h}\left[(x+1)^{2}\right]
$$

$$
=3(x+1)^{2}
$$

\qquad

(iv) $\mathrm{f}^{2}(x)=\mathrm{f}[\mathrm{f}(x)]$

$$
\begin{aligned}
& =\mathrm{f}(x+1) \\
& =(x+1)+1 \\
& =x+2
\end{aligned}
$$

Edexcel A level Maths Functions 2 Notes \& Examples

Example 2

The functions f and g are defined as:

$$
\begin{aligned}
& \mathrm{f}(x)=\frac{1}{x} \\
& \mathrm{~g}(x)=2 x
\end{aligned}
$$

Write the functions:
(i) $\frac{1}{2 x}$
(ii) $\frac{2}{x}$
(iii) $4 x$
in terms of the functions f and g .

Solution

(i) This function is obtained by first multiplying by 2 , then taking the reciprocal; i.e. applying g followed by f. So this function is fg.
(ii) This function is obtained by first taking the reciprocal, then multiplying by 2 ; i.e. applying f followed by g . So this function is gf.
(iii) This function is obtained by multiplying by 2 twice; i.e. applying g twice. So this function is g^{2}.

Inverse functions

The inverse of a function 'undoes' the effect of the function. The graph of the inverse function is a reflection of the graph of the original function in the line $y=x$.

Example 3

The function f is defined by $\mathrm{f}(x)=2 x^{3}+1$. Find the inverse function f^{-1}.

Solution

The function can be written as:

$$
\begin{aligned}
& y=2 x^{3}+1 \\
& x=2 y^{3}+1 \\
& x-1=2 y^{3} \\
& \frac{x-1}{2}=y^{3} \\
& y=\sqrt[3]{\frac{x-1}{2}}
\end{aligned}
$$

Interchanging x and y :
Rearranging:

The inverse function is $\mathrm{f}^{-1}(x)=\sqrt[3]{\frac{x-1}{2}}$.

Remember that to for a function to have an inverse function, it must be one-to-one (you can find the inverse of a many-to-one mapping, but this would be a one-to-many mapping, which is not a function).

Edexcel A level Maths Functions 2 Notes \& Examples

Example 4

The functions f and g are defined as:

$$
\begin{array}{ll}
\mathrm{f}(x)=x^{2}-4 & x \geq 0 \\
\mathrm{~g}(x)=\sqrt{x-3} & x \geq 3
\end{array}
$$

(i) What is the range of each function?
(ii) Find the inverse function f^{-1}, stating its domain.
(iii) Find the inverse function g^{-1}, stating its domain.
(iv) Write down the range of f^{-1} and the range of g^{-1}.

Solution

(i) The range of f is $\mathrm{f}(x) \geq-4$.

The range of g is $\mathrm{g}(x) \geq 0$.
(ii) The function can be written as $y=x^{2}-4$

Interchanging x and y :

$$
x=y^{2}-4
$$

Rearranging:

$$
\begin{aligned}
& x+4=y^{2} \\
& y=\sqrt{x+4}
\end{aligned}
$$

The domain of f^{-1} is the same as the range of f .
$\mathrm{f}^{-1}(x)=\sqrt{x+4} \quad x \geq-4$
(iii) The function can be written as $y=\sqrt{x-3}$

Interchanging x and y :

$$
x=\sqrt{y-3}
$$

Rearranging:

$$
x^{2}=y-3
$$

$$
y=x^{2}+3
$$

The domain of g^{-1} is the same as the range of g .

$$
\mathrm{g}^{-1}(x)=x^{2}+3 \quad x \geq 0
$$

(iv) The range of f^{-1} is $\mathrm{f}^{-1}(x) \geq 0$

The range of g^{-1} is $\mathrm{g}^{-1}(x) \geq 3$
(the same as the domain of f)
(the same as the domain of g)

