Edexcel A level Mathematics Further algebra

Section 3: Partial fractions
Notes and Examples
These notes contain subsections on

- Fractions with linear factors in the denominator
- Fractions with repeated linear factors in the denominator
- Using partial fractions with the binomial expansion

In the previous section, you practised adding and subtracting algebraic fractions.
e.g. $\frac{1}{x+1}+\frac{3}{x-2}=\frac{4 x+1}{(x+1)(x-2)}$.

Sometimes it is useful to reverse this process: i.e. to express a complicated fraction as the sum of two or more simpler ones. This process is called finding partial fractions.

You will be looking only at proper fractions: i.e. algebraic fractions where the degree (or order) of the numerator is less than the degree of the denominator.

Fractions with linear factors in the denominator

Any fraction of the form $\frac{p x+q}{(a x+b)(c x+d)}$ can be written in the partial fractions form $\frac{A}{a x+b}+\frac{B}{c x+d}$.
There cannot be any terms in x in the numerators of the partial fractions, as this would mean that the fractions would be improper.

To find the unknown constants A and B in the partial fractions, you first multiply through by the common denominator to clear the fractions. There are then two basic methods to find the constants:

- substitute any two values for x to give two equations in A and B (by choosing the values carefully you can make this very easy)
- multiply out and equate coefficients.

Substitution is often the most efficient method, but in some cases equating coefficients may be an easier way to find one or more of the unknown constants.

Edexcel A level Maths Algebra 3 Notes and Examples

Example 1

Express $\frac{x-9}{(x+1)(2 x-3)}$ in partial fractions.

Solution

The partial fractions must be of the form $\frac{A}{x+1}+\frac{B}{2 x-3}$.
So $\frac{x-9}{(x+1)(2 x-3)}=\frac{A}{x+1}+\frac{B}{2 x-3}$.
Multiplying both sides by $(x+1)(2 x-3): \quad x-9=A(2 x-3)+B(x+1)$

$$
A=2
$$

Substitute $x=0$

$$
\begin{aligned}
& -9=2(-3)+B \\
& -9=-6+B \\
& B=-3
\end{aligned}
$$

Hence $\frac{x-9}{(x+1)(2 x-3)}=\frac{2}{x+1}-\frac{3}{2 x-3}$

In some cases you may need to factorise the denominator before you start.

Example 2

Express $\frac{1}{x^{2}+x-2}$ in partial fractions.

Edexcel A level Maths Algebra 3 Notes and Examples

Solution

First factorise the denominator: $\quad \frac{1}{x^{2}+x-2}=\frac{1}{(x-1)(x+2)}$.

$$
\frac{1}{(x-1)(x+2)}=\frac{A}{x-1}+\frac{B}{x+2}
$$

Multiplying through by $(x-1)(x+2): \quad 1=A(x+2)+B(x-1)$
Substitute $x=1 \quad 1=3 A$

Substitute $x=-2 \quad 1=-3 B$
$B=-\frac{1}{3}$
Hence $\frac{1}{(x-1)(x+2)}=\frac{1}{3(x-1)}-\frac{1}{3(x+2)}$

Fractions with repeated linear factors in the denominator

This method needs to be adapted slightly when there is a repeated linear factor in the denominator. Trying to write $\frac{p x+q}{(a x+b)^{2}}$ in the form $\frac{A}{a x+b}+\frac{B}{a x+b}$ does not work as this will just give $\frac{p x+q}{(a x+b)^{2}}=\frac{A+B}{a x+b}$.

However, any fraction of the form $\frac{p x+q}{(a x+b)^{2}}$ can be written in the form $\frac{A}{a x+b}+\frac{B}{(a x+b)^{2}}$.

Example 3

Express $\frac{3 x-1}{x^{2}-4 x+4}$ in partial fractions.

Solution

Factorising the denominator: $\frac{3 x-1}{x^{2}-4 x+4}=\frac{3 x-1}{(x-2)^{2}}$

$$
\frac{3 x-1}{(x-2)^{2}}=\frac{A}{x-2}+\frac{B}{(x-2)^{2}}
$$

Multiplying through by $(x-2)^{2}: \quad 3 x-1=A(x-2)+B$
Substituting $x=2: \quad 5=B$
Equating coefficients of $x: \quad 3=A$
Hence $\frac{3 x-1}{(x-2)^{2}}=\frac{3}{x-2}+\frac{5}{(x-2)^{2}}$

Edexcel A level Maths Algebra 3 Notes and Examples

If there are other linear factors in the denominator, then treat them in the same way as before. In general, any fraction of the form $\frac{p x^{2}+q x+r}{(a x+b)^{2}(c x+d)}$ can be written in the form $\frac{A}{a x+b}+\frac{B}{(a x+b)^{2}}+\frac{C}{c x+d}$, and this can be extended to any number of factors in the denominator.

Example 4
Express $\frac{2 x^{2}+7}{(2 x+1)^{2}(x+3)}$ in partial fractions.

Solution

$$
\frac{2 x^{2}+7}{(2 x+1)^{2}(x+3)}=\frac{A}{2 x+1}+\frac{B}{(2 x+1)^{2}}+\frac{C}{x+3}
$$

Multiplying through by $(2 x+1)^{2}(x+3)$:

$$
2 x^{2}+7=A(2 x+1)(x+3)+B(x+3)+C(2 x+1)^{2}
$$

Substituting $x=-3: \quad 18+7=C(-6+1)^{2}$

$$
25=25 C
$$

$$
C=1
$$

Substituting $x=-\frac{1}{2}: \quad 2 \times \frac{1}{4}+7=B\left(-\frac{1}{2}+3\right)$
$\frac{15}{2}=\frac{5}{2} B$
$B=3$
Substituting $x=0: \quad 7=3 A+3 B+C$
$7=3 A+9+1$
$3 A=-3$
$A=-1$
Hence $\frac{2 x^{2}+7}{(2 x+1)^{2}(x+3)}=-\frac{1}{2 x+1}+\frac{3}{(2 x+1)^{2}}+\frac{1}{x+3}$

Using partial fractions with the binomial expansion

The following example shows how partial fractions can be used to simplify the working if you want to find a binomial expansion.

For example, if you want to find the binomial expansion of $\frac{1}{(x-1)(2-x)}$ up to the term in x^{3}, you could write it as $(x-1)^{-1}(2-x)^{-1}$, apply the binomial expansion to each bracket separately and then multiply out the brackets, discarding any terms of order greater than x^{3}. However, Example 6 shows how using partial fractions can make the work much easier, as in this case you have to add two algebraic expressions rather than multiplying.

Edexcel A level Maths Algebra 3 Notes and Examples

Example 5

Expand $\frac{1}{(x-1)(2-x)}$ up to the term in x^{3}, stating the range of values of x for which the expansion is valid.

Solution

$\frac{1}{(x-1)(2-x)}=\frac{A}{x-1}+\frac{B}{2-x}$
Multiplying through by $(x-1)(2-x): \quad 1=A(2-x)+B(x-1)$
Substituting $x=2: \quad 1=B$
Substituting $x=1: \quad 1=A$
$\frac{1}{(x-1)(2-x)}=\frac{1}{x-1}+\frac{1}{2-x}$
$=(x-1)^{-1}+(2-x)^{-1}$

$$
=-(1-x)^{-1}+2^{-1}\left(1-\frac{x}{2}\right)^{-1}
$$

$(1-x)^{-1}=1+(-1)(-x)+\frac{(-1)(-2)}{1 \times 2}(-x)^{2}+\frac{(-1)(-2)(-3)}{1 \times 2 \times 3}(-x)^{3}+\ldots$ $=1+x+x^{2}+x^{3}+\ldots$
This expansion is valid for $-1<x<1$.

$$
\begin{aligned}
\left(1-\frac{x}{2}\right)^{-1} & =1+(-1)\left(-\frac{x}{2}\right)+\frac{(-1)(-2)}{1 \times 2}\left(-\frac{x}{2}\right)^{2}+\frac{(-1)(-2)(-3)}{1 \times 2 \times 3}\left(-\frac{x}{2}\right)^{3}+\ldots \\
& =1+\frac{1}{2} x+\frac{1}{4} x^{2}+\frac{1}{8} x^{3}+\ldots
\end{aligned}
$$

This expansion is valid for $-1<\frac{x}{2}<1 \Rightarrow-2<x<2$

$$
\begin{aligned}
\frac{1}{(x-1)(2-x)} & =-(1-x)^{-1}+\frac{1}{2}\left(1-\frac{x}{2}\right)^{-1} \\
& =-\left(1+x+x^{2}+x^{3}+\ldots\right)+\frac{1}{2}\left(1+\frac{1}{2} x+\frac{1}{4} x^{2}+\frac{1}{8} x^{3}+\ldots\right) \\
& =-1-x-x^{2}-x^{3}+\frac{1}{2}+\frac{1}{4} x+\frac{1}{8} x^{2}+\frac{1}{16} x^{3}+\ldots \\
& =-\frac{1}{2}-\frac{3}{4} x-\frac{7}{8} x^{2}-\frac{15}{16} x^{3}+\ldots
\end{aligned}
$$

The expansion is valid for $-1<x<1$.

Note: another application of partial fractions is in integration. You will look at this in a later topic.

