Iteration

Question 1

The number of animals in a population at the start of year t is P_{t}
The number of animals at the start of year 1 is 400
Given that

$$
P_{t+1}=1.01 P_{t}
$$

work out the number of animals at the start of year 3
\qquad animals

Question 2

The equation $x^{3}+x=7$ has a solution between 1 and 2
The equation $x^{3}+x=7$ can be rearranged to give $x=\sqrt{[3] 7}-x$
Starting with $x_{0}=2$, use the iteration formula $x_{n+1}=\sqrt{[3] 7-x_{n}}$ three times to find an estimate for a solution of $x^{3}+x=7$

Question 3

Using $x_{n+1}=-2-\frac{4}{x^{2 n}}$
with $x_{0}=-2.5$
Explain the relationship between the values of x_{1}, x_{2} and x_{3} and the equation $x^{3}+2 x^{2}+4=$ 0

Question 4

The equation $2 x^{3}+4 x=3$ can be rearranged to give $x=\frac{3}{4}-\frac{x^{3}}{2}$
Starting with $x_{0}=0$, use the iteration formula $x_{n+1}=\frac{3}{4}-\frac{x_{n^{3}}}{2}$ three times to find an estimate for the solution to $2 x^{3}+4 x=3$

$$
x_{3}=
$$

\qquad

Question 5

Show that the equation $x^{3}+7 x-5=0 \quad$ has a solution between $x=0$ and $x=1$

Question 6

The number of bees in a beehive at the start of year n is P_{n}.
The number of bees in the beehive at the start of the following year is given by

$$
P_{n+1}=1.05\left(P_{n}-250\right)
$$

At the start of 2015 there were 9500 bees in the beehive.

How may bees will there be in the beehive at the start of 2018?

Question 7

Starting with $x_{0}=2$, use the iteration formula $x_{n+1}=\sqrt{[3]} 3 x_{n^{2}}-3$ to find the value of x_{2}. Give your answer correct to 3 decimal places.

$$
x_{2}=
$$

\qquad

Question 8

Using $x_{n+1}=-2-\frac{4}{x^{2} n}$
with $x_{0}=-2.5$
find the values of x_{1}, x_{2} and x_{3}

$$
\begin{aligned}
& x_{1}=\ldots . ~ \\
& x_{2}=\ldots . ~
\end{aligned}
$$

Question 9

The equation $x^{3}+5 x-4=0$ can be arranged to give $x=\frac{4}{x^{2}+5}$
(c) Starting with $x_{0}=0$, use the iteration formula $x_{n+1}=\frac{4}{x_{n^{2}}+5}$ twice to find an estimate for the solution of $x^{3}+5 x-4=0$

$$
\begin{aligned}
& x_{1}=. ~ \\
& x_{2}=. ~
\end{aligned}
$$

Question 10

The equation $3 x^{2}-x^{3}+3=0$ can be arranged to give $x=3+\frac{3}{x^{2}}$
Using
$x_{n+1}=3+\frac{3}{\left(x_{n}\right)^{2}}$ with $x_{0}=3.2$,
find the values of x_{1}, x_{2} and x_{3}
Write each solution correct to 5 decimal places.

$$
\begin{aligned}
& x_{1}= \\
& x_{2}= \\
& x_{3}=
\end{aligned}
$$

Question 11

The equation $x^{3}+4 x=1$ can be arranged to give $x=\frac{1}{4}-\frac{x^{3}}{4}$
Starting with $x_{0}=0$, use the iteration formula $x_{n+1}=\frac{1}{4}-\frac{\left(x_{n}\right)^{3}}{4}$ twice, to find an estimate for the solution of $x^{3}+4 x=1$

Write all the digits on your calculator display.

$$
\begin{aligned}
& x_{1}= \\
& \text {......................... } \\
& x_{2}=
\end{aligned}
$$

Question 12

The number of slugs in a garden t days from now is p, where

$$
p_{0}=100 p_{t+1}=1.06 p_{t}
$$

Work out the number of slugs in the garden 3 days from now.

