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[bookmark: _GoBack]7.1 Differentiation
You need to be able to
· sketch the graph of the gradient function for a given curve
· differentiate from first principles

The gradient function
When you sketch a gradient function you need to look for
· stationary points
· parts of the curve where the gradient is positive
· parts of the curve where the gradient is negative.
[image: ]
Examples
Example 1	The diagram shows the graph of y = f(x).
		Sketch the graph of the gradient function 
		for the graph of y = f(x). 






	[image: ]
	Use the graph of y = f(x) to construct the graph for the gradient function y = f '(x).
The scales on the x-axes are the same; the scales on the y-axes may be different.
At the two points marked A, the tangent to y = f(x), is horizontal and the gradient is 0. 
Therefore f ′(x) = 0 at these points.
The parts of the curve labelled B and D 
have a negative gradient so f ′(x) < 0 for these x-values.

The part of the curve labelled C has a positive gradient and the gradient function is therefore above the x-axis. At the point on the curve labelled C the gradient is the greatest so this is a maximum point on the gradient function.



[image: ]Example 2	The diagram shows the graph of y = g(x).
		Sketch the graph of the gradient function 
		for the graph of y = g(x).





		[image: ]
	

When x = 0, the tangent is a horizontal line and the gradient is 0.
So the gradient function, g′(x), 
is equal to 0.

The gradient function for the 
graph of y = g(x) is always 
negative, except where x = 0. 

So the gradient function is 
always below the x-axis, except 
at the point (0, 0).





Differentiating from first principles
When you differentiate from first principles to find the gradient at a point A on a curve, you start by finding the gradient of chord AB and then let point B get closer and closer to A.
A[image: ]
B[image: ]
tangent

When point B moves along the curve and gets closer to point A, the gradient of the chord AB gets closer to the gradient of the tangent.






[image: ]First find the gradient of a chord AB when A and B are points on the curve of y = f(x). 
The horizontal distance between A and B is h. 
If the x-coordinate of A is x, the x-coordinate of B and C is x + h. 
The y-coordinates of A and B are f(x) and f(x + h).

The gradient of chord AB =
As B approaches A (you write this as B → A), h approaches 0 (h → 0) and the gradient of chord AB approaches the gradient of the tangent. 
This gives the following formula, which is in the formula booklet. 

	Note:	You will only be required to differentiate polynomials with small integer powers (up to 3).

where f ′(x) is the gradient of the tangent at a point with x-coordinate x.

Examples
Example 3	Find from first principles the gradient of the curve y = x2 at the point (1, 1).
	[image: ]



	Draw a chord on the graph from 
point (1, 1) to a point on the curve with x-coordinate 1 + h.
This second point has a y-coordinate of (1 + h)2.

Use a triangle to calculate the gradient of the chord. 
The horizontal side has length h, and  the vertical side has length (1 + h)2 – 1.
(Look at the numbers on the y-axis.)

This is the formula for f ′(x) with 1 substituted for x. 
As you cannot divide by 0, you cannot substitute h = 0 at this stage.
Expand the bracket and simplify.


Now you can substitute h = 0 and find the required gradient.


Alternative notation:


When h → 0,  2 + h → 2 and the gradient of the chord → 2.
So the gradient of the curve at (1, 1) = 2



Example 4	Find from first principles the gradient function of f(x) = x2 
	[image: ]



	A chord has been drawn from the point (x, x2) to a point with
x-coordinate x + h. This second point has a y-coordinate of (x + h)2.
Use the triangle to calculate the gradient of the chord. The horizontal side has length h, and the vertical side has length (x + h)2 – x2.


This is the formula from the booklet. As you cannot divide by 0, you cannot yet substitute h = 0.


Expand the bracket and simplify.






Now you can substitute h = 0 and find the answer.


				Note: You do not need to draw the diagram when answering the question.


Example 5	Prove from first principles, that the derivative of x3 is 3x2. 
	




So f ′(x) = 3x2
	First work out the numerator for the formula.
Expand the bracket and simplify.


And factorise.

Use the formula for f ′(x).

Cancel h.

You can now substitute h = 0.




Exercise
1.	Sketch the graph of the gradient functions for each curve. 	
	(a)			(b)		(c)
	[image: ]	[image: ]	[image: ]

[image: ]2.	The diagram shows the gradient function of a curve. 
	(a)	The original curve passes through the point (0, c). 	
		Sketch the original curve.
	(b)	On the same diagram sketch a different curve with the 
		same gradient function.
	(c)	How can you transform the first curve to the second curve?


3.	Find from first principles the gradient of the curve y = (x + 1)2 at the point (2, 9).
4.	Find from first principles the gradient function of f(x) = 3x2.
5.	Prove from first principles, that the derivative of x2 + 5x is 2x + 5. 


Answers
[image: ][image: ][image: ]1.	(a)			(b)		(c)
	







			
[image: ]2.	(a)	See solid curve on diagram.
	(b)	See dashed curve on diagram.

	(c)	Translation over vector 
		Note. (0, d) can be anywhere on the y-axis
 


[image: ]3. 	When x = 2 + h, y = ((2 + h) + 1)2 = (3 + h)2.

	

	When 
	So the gradient of the curve at (2, 9) = 6

4. 	 

	So 
Alternative method
Gradient of chord =





So 


5.	

	

	
	So the derivative of x2 + 5x is 2x + 5.Alternative method
Gradient of chord =

	


So the derivative of x2+5x is 2x + 5.
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