

Edexcel A level Maths Projectiles

Section 1: Introduction

Exercise level 3 (Extension)

1. By writing down the area of the triangle *OAB* in two different ways, show that

$\sin 2\theta^\circ = 2\sin\theta^\circ\cos\theta^\circ$

Find an expression for the range of a particle (in terms of the usual u, α and g), and deduce from it that the maximum range for a given speed and angle of projection is 45° above the horizontal.

- 2. In this question use g = 10.
 - (i) A particle is projected with speed 40 ms⁻¹ at an angle 30° above the horizontal. Find its range.
 - (ii) A second particle is projected with speed 40 ms⁻¹ but at a different angle α^{o} to the horizontal, yet it has the same range as the first. What was its projection angle α^{o} ?
 - (iii) A particle is projected with speed $u \text{ ms}^{-1}$ at an angle θ° to the horizontal. Find a second angle ϕ (in terms of θ) to obtain the same range.
 - (iv) If the time of flight using ϕ is twice that using θ , what were the two projection angles θ and ϕ ? What is the ratio of their maximum heights?
- 3. In this question use g = 9.8.
 - (i) A pellet is fired from ground level with speed 4 ms⁻¹ at an angle to the horizontal of 75° . Find an expression for its distance from its starting point at a time *t* seconds after it is projected and while it is still in flight.
 - (ii) An enclosure in the form of a hemisphere with radius 88 cm stands with its circular base on a horizontal surface. The enclosure is made from a plastic material which is impenetrable but slightly extensible. A pellet is fired with speed 4 ms⁻¹ at an angle of 75° to the horizontal from the centre of the circular base. Show using a spreadsheet that the pellet grazes the plastic envelope before it lands.

