Edexcel A level Maths Projectiles

Section 1: Introduction

Exercise level 3 (Extension)

1. By writing down the area of the triangle $O A B$ in two different ways, show that

$$
\sin 2 \theta^{\circ}=2 \sin \theta^{\circ} \cos \theta^{\circ}
$$

Find an expression for the range of a particle (in terms of the usual u, α and g), and deduce from it that the maximum range for a given speed and angle of projection is 45° above the horizontal.
2. In this question use $g=10$.
(i) A particle is projected with speed $40 \mathrm{~ms}^{-1}$ at an angle 30° above the horizontal. Find its range.
(ii) A second particle is projected with speed $40 \mathrm{~ms}^{-1}$ but at a different angle α^{o} to the horizontal, yet it has the same range as the first. What was its projection angle α° ?
(iii) A particle is projected with speed $u \mathrm{~ms}^{-1}$ at an angle θ° to the horizontal. Find a second angle ϕ (in terms of θ) to obtain the same range.
(iv) If the time of flight using ϕ is twice that using θ, what were the two projection angles θ and ϕ ? What is the ratio of their maximum heights?
3. In this question use $g=9.8$.
(i) A pellet is fired from ground level with speed $4 \mathrm{~ms}^{-1}$ at an angle to the horizontal of 75°. Find an expression for its distance from its starting point at a time t seconds after it is projected and while it is still in flight.
(ii) An enclosure in the form of a hemisphere with radius 88 cm stands with its circular base on a horizontal surface. The enclosure is made from a plastic material which is impenetrable but slightly extensible. A pellet is fired with speed $4 \mathrm{~ms}^{-1}$ at an angle of 75° to the horizontal from the centre of the circular base. Show using a spreadsheet that the pellet grazes the plastic envelope before it lands.

