Edexcel A level Maths Mechanics Kinematics

Section 1: Motion in two dimensions

Exercise level 2

1. Particle P is moving in the $x-y$ plane with the origin at O . The position vector of P with respect to O is $\mathbf{r}=2 t^{3} \mathbf{i}+3 t^{2} \mathbf{j}$. Find the velocity vector and the acceleration vector for P and hence the magnitudes of the velocity and acceleration when $t=3$.
2. A force $\mathbf{F}=4 \mathbf{i} \mathbf{i}+6 \mathbf{j}$ acts on a particle of mass 2 kg . Given that the particle has an initial velocity of $5 \mathbf{j}$ at the origin find the velocity and displacement when $t=3$.
3. At time t the position vector of particle P of mass 4 kg is $\mathbf{r}=6 \mathbf{t} \mathbf{i}-4 t^{2} \mathbf{j}$. Force \mathbf{F} acts on P. Find the magnitude of \mathbf{F}.
4. The position vector of a radio controlled car is $\mathbf{r}=(2 t-1) \mathbf{i}-t^{2} \mathbf{j}$
(i) Find the velocity at time t.
(ii) Find the initial direction of motion.
(iii) Show that the acceleration is constant.
(iv) Explain why the car can never move in a direction at right angles to the original direction.
(v) Find a Cartesian equation for the path of the car.
5. Two forces $\mathbf{F}=12 \mathbf{i}-2 \mathbf{j}$ and $\mathbf{T}=10 \mathbf{i}+12 \mathbf{j}$ act on an object of mass 20 kg .
(i) Find the resultant force on the object.
(ii) Find the acceleration of the object.
(iii) Given that the object is initially at rest at a point with position vector $3 \mathbf{j}$ find its position vector after t seconds.
6. The position vector of a particle P is $\mathbf{r}=\left(t^{2}-4 t\right) \mathbf{i}+\left(t^{3}+f t^{2}\right) \mathbf{j}$ for $t>0$, where f is a constant. Given that the particle comes to instantaneous rest, find the value of f.
7. $\mathbf{v}=t^{2} \mathbf{i}+3 t \mathbf{j}$ and when $t=0, \mathbf{s}=18 \mathbf{i}-24 \mathbf{j}$.

Find the acceleration and displacement when $t=3$.

