
### **VECTORS AND DISEASE**



### LTC Jason H. Richardson Walter Reed Army Institute of Research

### OUTLINE

### • Threats

- Understanding vectorborne disease epidemiology
- Area specific, risk assessment.
- What are the threats?
- Resources
  - Where can you find answers?
- Prevention
  - What can you do to minimize risk?





### What are the **priority threats**?

#### It always depends but, in general according to "the perts"... DEPARTMENT OF THE ARMY BROOKE ARMY MEDICAL CENTER 3851 ROGER BROOKE DRIVE FORT SAM HOUSTON TX 78234-6200 23 April 2010

MEMORANDUM FOR RECORD

SUBJECT: Infectious Disease Threats to the US Military Prioritization Panel Results

1. A panel was hosted by the Directorate of Combat and Doctrine Development (DCDD) and the Military Infectious Diseases Research Program (MIDRP), US Army Medical Research and Materiel Command (MRMC), under the umbrella of the Medical Force Protection Integrated Capabilities Development Team (ICDT) Charter to prioritize the current infectious disease threats to the US Military (Appendix A).

2. Panel objectives were to identify and operationally prioritize the infectious disease threats to US Forces to assist in the determination of capability requirements.



3. References included "Initial Capabilities Document (ICD) for Infectious Disease Countermeasures (IDCM)," 2006, and "Infectious Diseases Investment Decision Evaluation Algorithm: A Quantitative Algorithm for Prioritization of Naturally Occurring Infectious Disease Threats to the U.S. Military," *Military Medicine* 2008;173:174-181.



#### Appendix A Prioritization of Infectious Disease Threats to the US Military

| 1.  | Malaria                                      |  |  |  |  |  |
|-----|----------------------------------------------|--|--|--|--|--|
| 2.  | Dengue                                       |  |  |  |  |  |
| 3.  | Diarrhea, bacterial                          |  |  |  |  |  |
| 4.  | Multidrug-resistant (MDR) wound pathogens    |  |  |  |  |  |
| 5.  | Leishmaniasis                                |  |  |  |  |  |
| 6.  | Q fever (Coxiella burnetti)                  |  |  |  |  |  |
| 7.  | Norovirus and other viral diarrhea           |  |  |  |  |  |
| 8.  | Influenza                                    |  |  |  |  |  |
| 9.  | Adenovirus                                   |  |  |  |  |  |
| 10. | Leptospirosis                                |  |  |  |  |  |
| 11. | Diarrhea, protozoal                          |  |  |  |  |  |
| 12. | Tuberculosis (TB)                            |  |  |  |  |  |
| 13. | Crimean-Congo hemorrhagic fever              |  |  |  |  |  |
| 14. | Human immunodeficiency virus (HIV/AIDS)      |  |  |  |  |  |
| 15. | Hemorrhagic fever with renal syndrome (HFRS) |  |  |  |  |  |
| 16. | Chikungunya                                  |  |  |  |  |  |
| 17. | Meningococcal meningitis                     |  |  |  |  |  |
| 18. |                                              |  |  |  |  |  |
| 19. | Rickettsioses                                |  |  |  |  |  |
| 20. | Viral encephalitides                         |  |  |  |  |  |
| 21. | Hepatitis E                                  |  |  |  |  |  |
| 22. | Lassa fever and other arenaviruses           |  |  |  |  |  |
| 23. |                                              |  |  |  |  |  |
| 24. |                                              |  |  |  |  |  |
| 25. |                                              |  |  |  |  |  |
|     | Brucellosis                                  |  |  |  |  |  |
|     | Other arboviral illnesses                    |  |  |  |  |  |
| 28. |                                              |  |  |  |  |  |
| 29. |                                              |  |  |  |  |  |
| 30. |                                              |  |  |  |  |  |
| 31. | Tularemia                                    |  |  |  |  |  |
| 32. | Trypanosomiasis                              |  |  |  |  |  |
| 33. | Ebola/Marburg hemorrhagic fever              |  |  |  |  |  |
| 34. | Chagas' disease                              |  |  |  |  |  |
| 35. | Yellow fever                                 |  |  |  |  |  |
| 36. |                                              |  |  |  |  |  |
| 37. | Bartonelloisis (Oroya fever)                 |  |  |  |  |  |
| 38. | Soil-transmitted helminths                   |  |  |  |  |  |

### **PRIORITY THREATS**

- 1. Malaria
- 2. Dengue
- 4. Leishmaniasis
- 13. CCHF
- 16. Chikungunya
- 18. Plague
- **19. Rickettsioses**
- 20. Viral enceph
- 23. TBE
- 24. Rift Valley fever
- 27. Other arboviruses



### Risk

What are the threats in my AO?

# Depends on **where** you are and **when** you are there.





### NATURAL NIDALITY OF TRANSMISSIBLE DISEASES- By E. N. Pavlovsky (1964)

- Pavlovsky introduced the concept of natural nidality of human diseases
  - Defined by the idea that **microscale** disease foci are determined by the entire ecosystem
  - Thus the nidus of a disease "exists under definite conditions of climate, vegetation, soil, and favorable microclimate."
- According to Pavlovsky, "nidus" is a translation of the root word "ochag," meaning a hearth.
  - Thus a nidus of disease is its nest, home, or habitat (equivalent to the Latin "focus").
- The central concept is that a disease has its own natural habitat in the same way as a species.



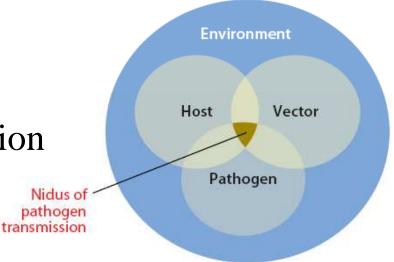


## **Disease Nidality**

- E. N. Pavlovsky. 1964. *Natural focality of transmissive diseases in connection with landscape epidemiology of zooanthroponoses.*
- Introduced the Russian word "ochag" meaning hearth or breeding ground.
- Nidus (Latin) nest.
- The nidus of a disease
  - "exists under definite conditions
  - of climate, vegetation, soil, and



favorable microclimate."






### Nidality –Landscape Epidemiology

For vector-borne diseases, transmission depends on the **transient interaction** of a given:

- Vector species
- Pathogen genotype
- Host (human) population
- Ecological setting



### **Everything depends on space and time**





## **Components of transmission**

### D Pathogen

- Imported genotypes, mutations, replication rate

### **Vector**

• Feeding behavior, host preference, habitat, vector competence, density, life span

### Host and reservoir populations

• Immunity, density, living conditions, movement

### □ Landscape

- Climate, rainfall, temp., humidity, habitat

### **Everything depends on space and time**





### **FACTORS TO HELP ESTIMATE RISK**

#### 1. What pathogens and strains/species are present?

(P. falciparum is far more serious than P. vivax)

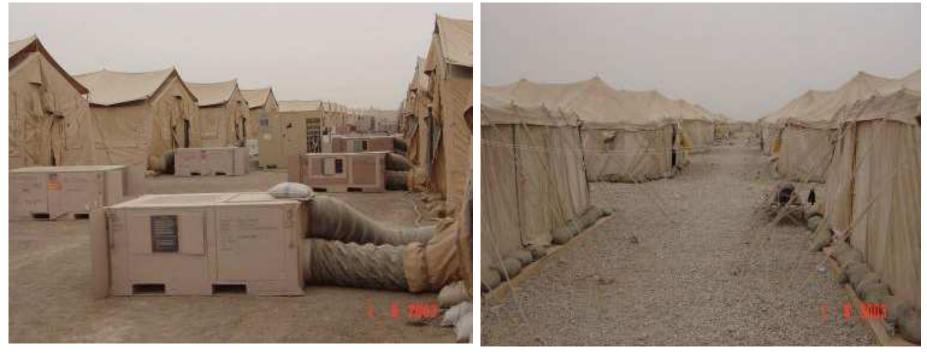
- 2. Will the mission put personnel into close contact with vectors?
  - VECTOR BEHAVIOR
    - Anopheles mosquitoes are nighttime biters.
    - *Aedes* mosquitoes are daytime biters.
    - Sandflies fly close to the ground.
  - VECTOR HABITAT...Will personnel operate in areas with vectors?
  - **BILLETING**...in buildings with doors and screened windows?

#### 3. Will conditions support disease transmission?

- SEASONALITY
- RECENT WEATHER (especially rain)
- DENSITY OF VECTOR
- INFECTION RATE

#### 4. What is the Incubation Period?

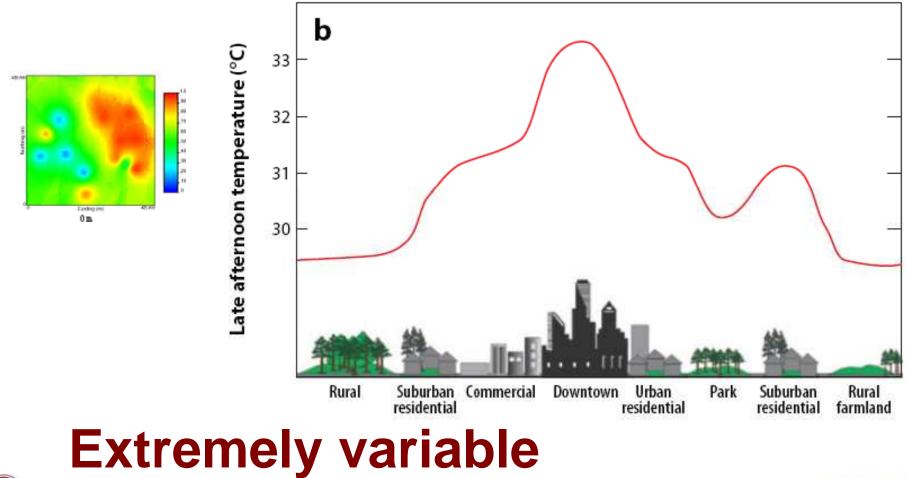







## **Army Tent City**

## **Tent City**

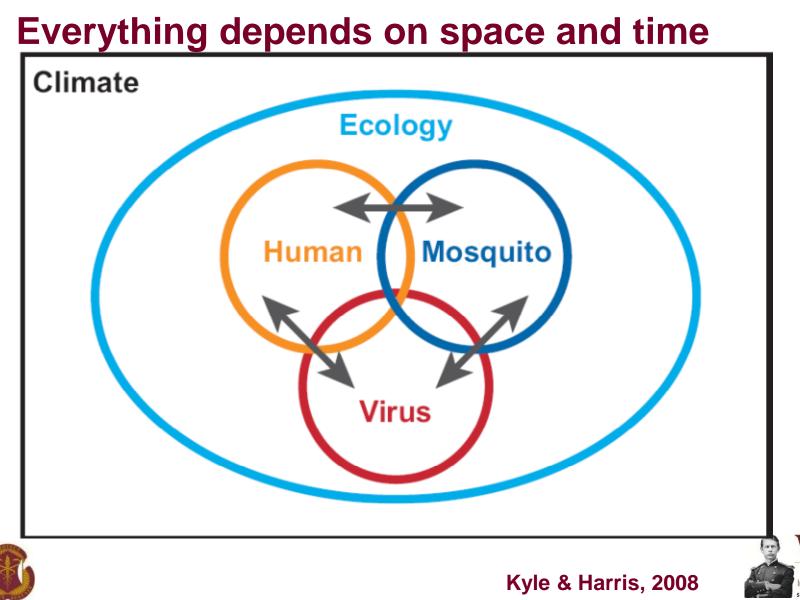

## No AC



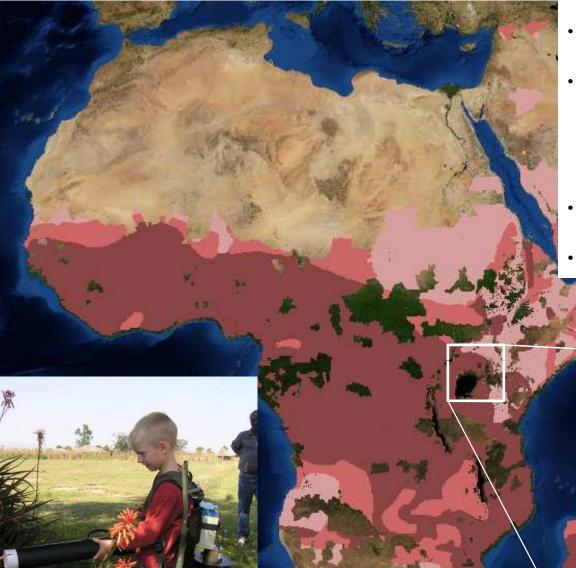




## Land cover $\rightarrow$ temperature







(Reisen, 2010)



## **Epidemiology of transmission**



Walter Reed Army nstitute of Research



- Model of P. falciparum
- No transmission in areas surrounded by high transmission.
- Why?...
- No vectors.



### HELP IN IDENTIFYING PRIORITY THREATS

### Entomological Operational Risk Assessments (EORA)

- Provide risk estimates for vector-borne and zoonotic diseases in the country of concern.
- These estimates, prepared by USACHPPM.
- EORAs available for >30 countries.

### Infectious Disease Risk Assessment (IDRA)

- AFMIC now NCMI
- Web-based and CD (MEDIC)
- unclassified medical intelligence





### RESOURCES

### Where can you find answers?

- Public Health Command (PHC), Ento Div http://chppm-www.apgea.army.mil/ento/default.htm
- AFPMB

http://www.afpmb.org

- NCMI (MEDIC CD)
- Walter Reed Biosystematics Unit (WRBU) http://wrbu.si.edu and http://mosquitomap.nhm.ku.edu/vectormap/
- Command PM assets







#### Armed Forces Pest Management Board

recommends policy, provides guidance, and coordinates the exchange of information on all matters related to DoD pest management

#### Log in/Register

Search AFPMB.org

Search the AFPMB Website

#### **Questions?**

Send a question to the Board

#### **DoD Topics**

http://www.

afpmb.org

- Pesticide & Equipment Lists
- Training & Certification
- DoD Pesticide Hotline

#### Literature







#### **Military Entomology**



#### **Board Meeting Info**

Next Board Meeting: Oct. 31 - Nov 4, 2011

- Information from last meeting
- Board Minutes & Staff Reports
- Committee Workspaces



#### Contingency & Deployment Resources

We provide support to DoD personnel on any pest management issue in any situation. We also provide rapid accurate responses to questions regarding all aspects of pest management and maintain the website to meet the needs of our customers. Find a resource now

#### Literature Retrieval System

Our Literature Retrieval System is an online collection of scientific papers comprising over 100.000 documents in searchable PDF format, drawn from our extensive library of books, journals, reprints, reports, and other sources. Search our database of over 120.000 PDFs

#### Deployed War-Fighter Protection (DWFP) Program

The Deployed War-Fighter Protection research program (DWFP) is an initiative to develop and validate novel methods to protect United States Military deployed abroad from threats posed by disease-carrying insects. Read more

#### Disease Vector Ecology Profiles

Disease Vector Ecology Profiles (DVEPs) summarize unclassified literature on medically important arthropods, vertebrates and plants that may adversely affect troops in specific countries or regions of the world. Read more

#### **Technical Guides**

As a unit of the AFPMB, ISD (Information Services Division) collects, stores and disseminates published and unpublished information on arthropod vectors and pests, natural resources, and environmental biology important to the DoD. Read more

#### Living Hazards Database

The Living Hazards Database (LHD) is a comprehensive compilation of more than 500 species worldwide, which are reported to cause serious injury or death of humans. Read more

#### What's New

Audrey Perich and Brian Zeichner receive award for development of lethal ovitrap Report of the 6th Annual Meeting of the Roll Back Malaria Partnership Roll Back Malaria Progress & Impact Series Archives

#### Flickr Images



Go to our image database

#### YouTube Videos



More

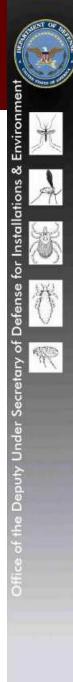















### **REGIONAL RISK**

### **DVEPS**

- Provide risk estimates for vector-borne and zoonotic diseases in the regions of concern.
- Prepared by AFPMB.



### Regional Disease Vector Ecology Profile

### **South Central Asia**



Defense Pest Management Information Analysis Center Armed Forces Pest Management Board Forest Glen Section Walter Reed Army Medical Center Washington, DC 20307-5001

Homepage: http://www.afpmb.org





#### The Walter Reed Biosystematics Unit



ed Army Research

Fleas

AIR

VectorMap

Comprised of MosquitoMap, SandflyMap and TickMap

> Geospatially referenced clearinghouses for arthropod disease vector species collection records and distribution models.

> Users can pan and zoom to anywhere in the world to view the locations of:

> past vector collections and

> the results of modeling that predicts the geographic extent of individual species.

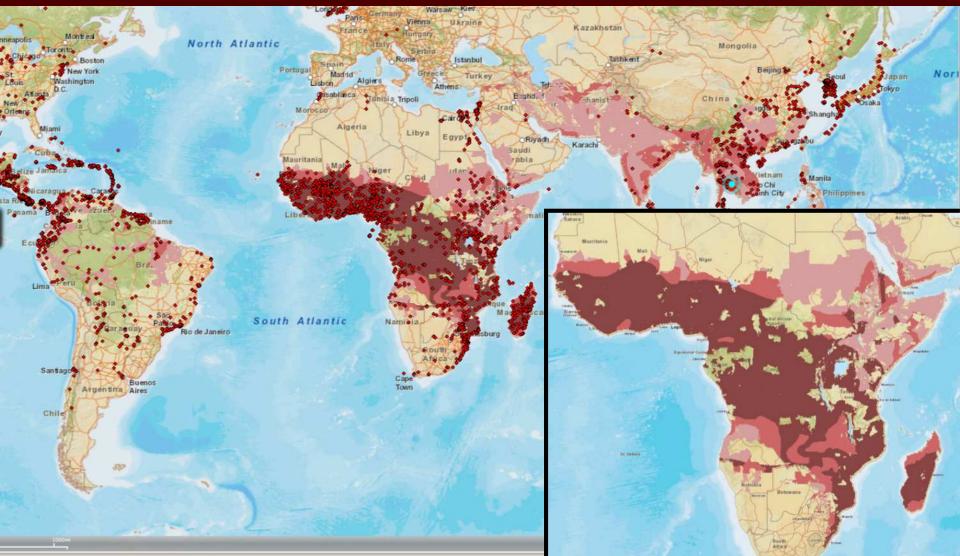
http://mosquitomap.nhm.ku.edu/vectormap/



VectorMap is new and still in the test phase.

Requires you to download Silver Light freeware from Microsoft.




#### Model of *Plasmodium falciparum* in 2005 from the Malaria Atlas Project <u>http://www.map.ox.ac.uk/index.htm</u>.

Hypoendemic, Mesoendemic and Hyper-holoendemic

Several sources of information on malaria risk (notably international travel health guidelines on malaria chemoprophylaxis, altitude limits for dominant vectors, climate limits for malaria transmission and human population density thresholds) have been combined in a GIS to generate this map. See Guerra et al. (2006) Advances in Parasitology 62: 157 - 179 and Guerra et al. (2006) Trends in Parasitology 22: 353 - 358 for details.

The method for defining the endemic levels within these limits can be found in Snow et al. (2005) Nature 434: 214 - 217.

#### Anopheles collection records show up as red dots



### Tick collection records

## Major Vectorborne Disease Threats

- Malaria
- Dengue
- Leishmaniasis
- Other arboviruses
  - (e.g., chikungunya, JEV, WNV)
- Rickettsioses
  - (e.g. African tick bite fever, scrub typhus)





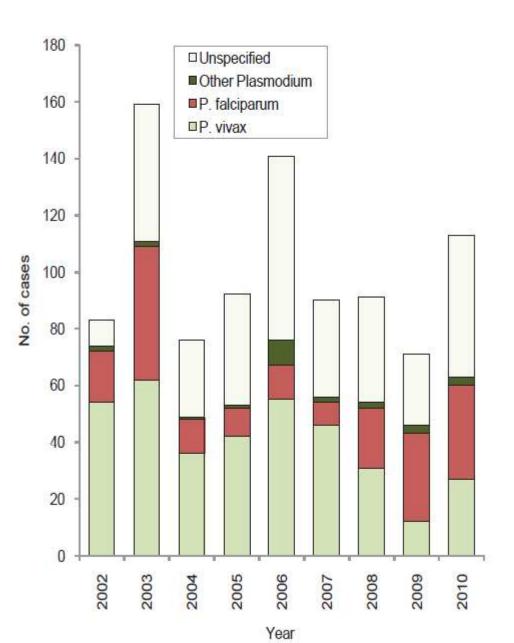
### **Vectorborne Disease Threats**

#### TABLE 1. Past and present impact of vector-borne diseases of military importance among deployed troops

|                                                  | Past threats                                                                                                                                                                                                                                | Present threats                                                                                                                                                                                                     | Other diseases of less importance                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sandfly-borne diseases                           | Sandfly fever<br>Old World cutaneous leishmaniasis<br>New World mucocutaneous<br>leishmaniasis<br>Visceral leishmaniasis                                                                                                                    | Sandfly fever<br>Old World cutaneous leishmaniasis<br>New World mucocutaneous leishmaniasi<br>Visceral leishmaniasis                                                                                                | Oroya fever<br>s                                                                                                                                                                                                                                                                                                                                                                        |
| Mosquito-borne diseases                          | Malaria<br>Lymphatic filariasis<br>Yellow fever<br>Japanese B encephalitis<br>Dengue fever<br>Chikungunya disease                                                                                                                           | Malaria<br>Dengue fever<br>Chikungunya disease<br>Rift Valley fever virus<br>West Nile virus                                                                                                                        | O'nyong nyong virus,<br>Semliki Forest virus,<br>Sindbi virus, and other<br>mosquito-borne viruses                                                                                                                                                                                                                                                                                      |
| Flea-borne diseases                              | Plague<br>Murine typhus                                                                                                                                                                                                                     | Plague?<br>Murine typhus?                                                                                                                                                                                           | Flea-borne spotted fever                                                                                                                                                                                                                                                                                                                                                                |
| Louse-borne diseases                             | Typhus<br>Trench fever<br>Louse-borne relapsing fever                                                                                                                                                                                       |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                         |
| Tick-borne diseases                              | Rocky mountain spotted fever<br>Mediterranean spotted fever<br>African tick bite fever<br>Other common tick-borne<br>spotted fevers<br>Ehrlichiosis<br>Q-fever*<br>Tularemia*<br>Crimean–Congo hemorrhagic fever<br>Tick-borne encephalitis | Rocky mountain spotted fever<br>Mediterranean spotted fever<br>African tick bite fever<br>Other common tick-borne<br>spotted fevers<br>Ehrlichiosis<br>Q-fever*<br>Tularemia*<br>Crimean–Congo hemorrhagic<br>fever | New pathogenic<br>rickettsiae (Rickettsia<br>slovaca, Rickettsia<br>helvetica, and Rickettsia<br>sibirica mongolitimonae)<br>'Rickettsia of unknown<br>pathogenicity'<br>Colorado tick fever<br>Kemerovo tick fever<br>Other tick-borne fevers<br>(Dugbe or Banjha virus)<br>Omsk hemorrhagic fever<br>Kyasianur Forest disease<br>Alkhurma virus hemorrhagic fever<br>Human babesiosis |
| Mite-borne diseases<br>Tsetse fly-borne diseases | Scrub typhus<br>Sleeping sickness                                                                                                                                                                                                           | Scrub typhus Sleeping sickness Pages et                                                                                                                                                                             | al., 2010. The past and present                                                                                                                                                                                                                                                                                                                                                         |

Chagas disease

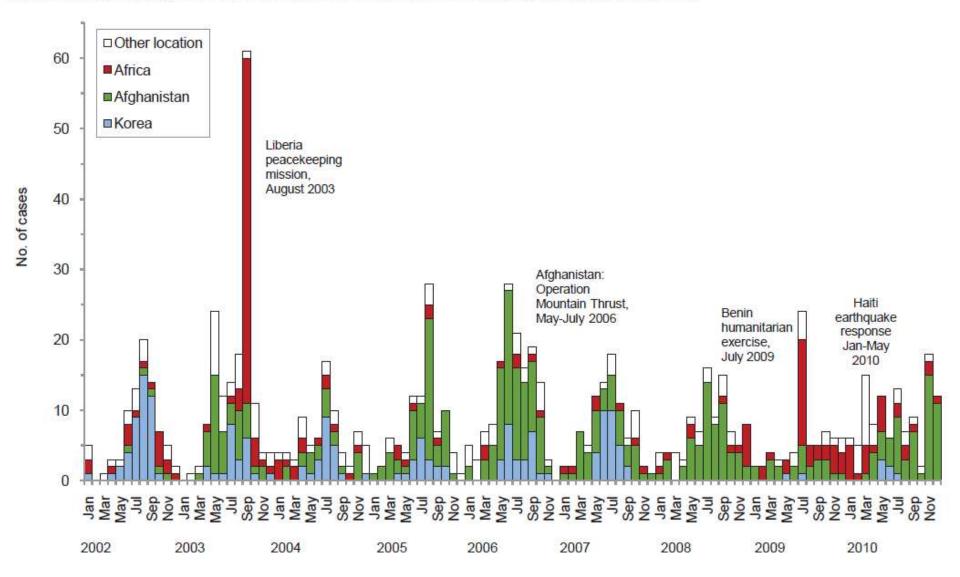
Kissing bug-borne diseases


Sleeping sickness Chagas disease

Pages et al., 2010. The past and present threat of vector-borne diseases in deployed

Troope Clip Migraphial Infact




Figure 1. Malaria cases among U.S. service members, by *Plasmodium* species and calendar year of diagnosis/report, 2002-2010





## Malaria

Figure 2. Malaria among U.S. service members, by estimated location of infection acquisition, 2002-2010



## Malaria

Table 2. Number of malaria cases by geographical location of diagnosis or report and presumed location of acquisition, U.S. Armed Forces, 2010

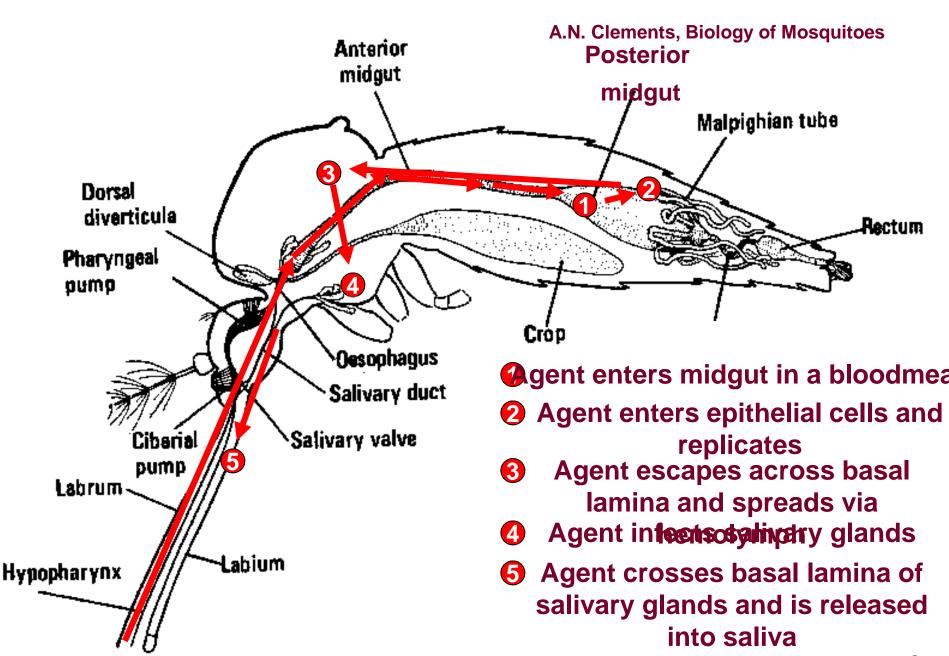
|                                                             | Presumed location of infection acquisition |             |          |          |          |                          | % of total |
|-------------------------------------------------------------|--------------------------------------------|-------------|----------|----------|----------|--------------------------|------------|
| Location of diagnosis/report                                | Korea                                      | Afghanistan | Africa   | Haiti    | Unknown  | Total                    | 2010 cases |
| Bagram/Camp Lacy, Afghanistan                               | 0                                          | 24          | 0        | 0        | 0        | 24                       | 21.2       |
| Landstuhl, Germany                                          | 0                                          | 6           | 4        | 0        | 0        | 10                       | 8.8        |
| Fort Bragg, NC                                              | 0                                          | 1           | 0        | 8        | 0        | 9                        | 8.0        |
| Portsmouth, VA                                              | 0                                          | 0           | 3        | 1        | 1        | 5                        | 4.4        |
| Seoul, Korea                                                | 5                                          | 0           | 0        | 0        | 0        | 5                        | 4.4        |
| Fort Wainwright, AK                                         | 0                                          | 4           | 0        | 0        | 0        | 4                        | 3.5        |
| Camp Lejeune, NC                                            | 0                                          | 1           | 0        | 3        | 0        | 4                        | 3.5        |
| Naval Station Norfolk, VA                                   | 0                                          | 0           | 4        | 0        | 0        | 4                        | 3.5        |
| Fort Carson, CO                                             | 0                                          | 3           | 0        | 0        | 0        | 3                        | 2.7        |
| Fort Bliss, TX                                              | 1                                          | 2           | 0        | 0        | 0        | 3                        | 2.7        |
| Walter Reed Army Medical Center, DC                         | 0                                          | 0           | 0        | 0        | 2        | 2                        | 1.8        |
| Fort Stewart, GA                                            | 0                                          | 1           | 0        | 0        | 1        | 2                        | 1.8        |
| Fort Campbell, KY                                           | 0                                          | 2           | 0        | 0        | 0        | 2                        | 1.8        |
| Nellis Air Force Base, NV                                   | 0                                          | 2           | 0        | 0        | 0        | 2                        | 1.8        |
| Fort Hood, TX                                               | 0                                          | 0           | 1        | 1        | 0        | 2                        | 1.8        |
| Naval Mobile Construction Battalion 7<br>(location unknown) | 0                                          | 0           | 2        | 0        | 0        | 2                        | 1.8        |
| Joint Task Force - Horn of Africa                           | 0                                          | 0           | 2        | 0        | 0        | 2                        | 1.8        |
| Other locations (with 1 case each)                          | 0                                          | 12          | 8        | 1        | 7        | 28                       | 24.8       |
| Total (% of total)                                          | 6 (5%)                                     | 58 (51%)    | 24 (21%) | 14 (12%) | 11 (10%) | <mark>11</mark> 3 (100%) | 100.0      |

## Malaria

- Risk varies geographically
  - Different species of Anopheles mosquitoes.
- Entomological inoculation rate (EIR).
  - An estimate of exposure to infective mosquitoes,
  - EIRs can exceed 1 infective bite per person per night.





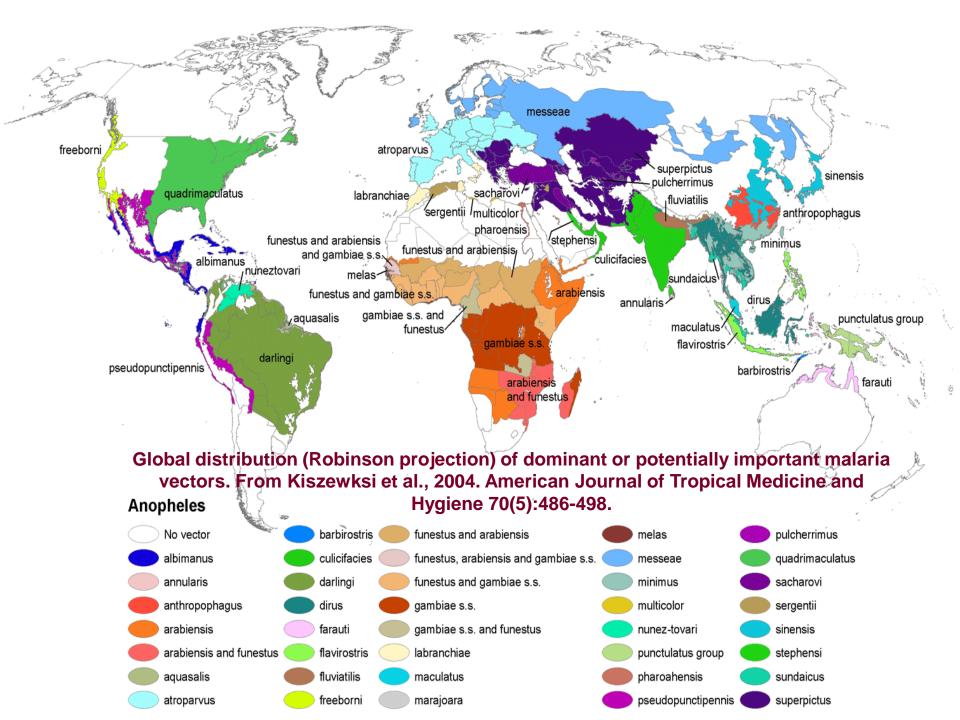

## What is a vector?

- An arthropod that becomes infected with a pathogen and is able to transmit it to another host.
- Although an arthropod is able to maintain a parasite alive within its body, transmission depends upon its competence as a vector.





### **Barriers to Pathogen Transmission**




## **Vector potential**

- Mosquito species vary in their vector potential because of environmental conditions and factors affecting their **abundance**, **blood-feeding behavior**, **survival**, **and ability to support malaria parasite development**.
- Sporogony is the complex life cycle of the parasite in female mosquitoes.
- Most individual mosquitoes that ingest gametocytes do not support development to the sporozoite stage.



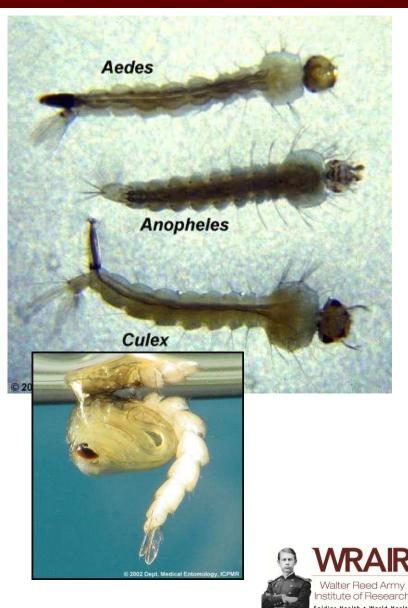




### Eggs

- Eggs are laid individually on the water surface and are kept afloat by air chambers (floats).
- Females lay batches of 75 to 150 eggs.
- The eggs hatch after two or three days at temperatures of 25-30°C.
- At lower temperatures, this period can be longer, and the eggs can resist total or partial desiccation in moist soil for many days.






### Larvae

- Characteristic resting position, lying parallel to the water surface.
- Larval development takes around 5 to 7 days.
- Larval habitat varies with species.

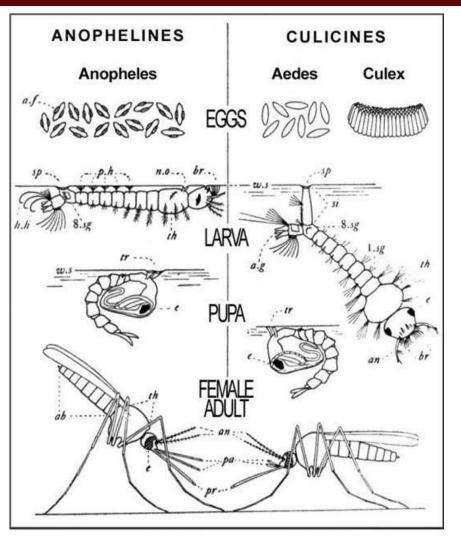
### Pupae

- Pupae do not eat.
- Metamorphosis of the larva into an adult.
- It lasts from two to three days.





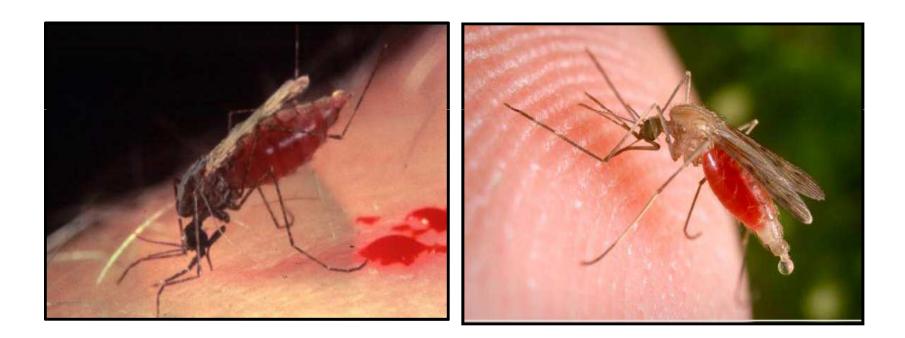
### Adult:


- Live from 3 to 4 weeks.
- Feeding occurs at night.
- Host preference varies by species.
- Indoor vs. outdoor feeding








- Larvae lack a siphon
- Larvae rest parallel to water surface
- Adults hold body at an angle of 30° degrees or more with the surface.

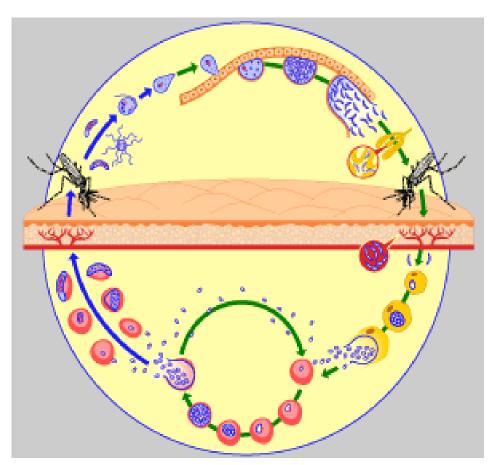






# Blood required for egg development



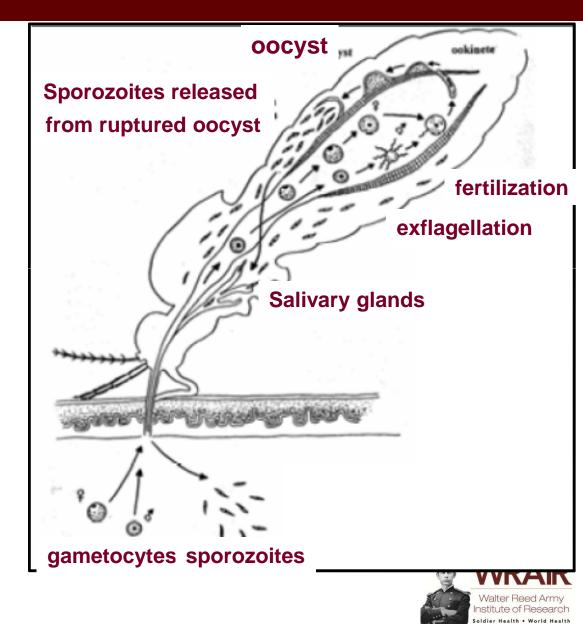





# Life cycle of Plasmodium

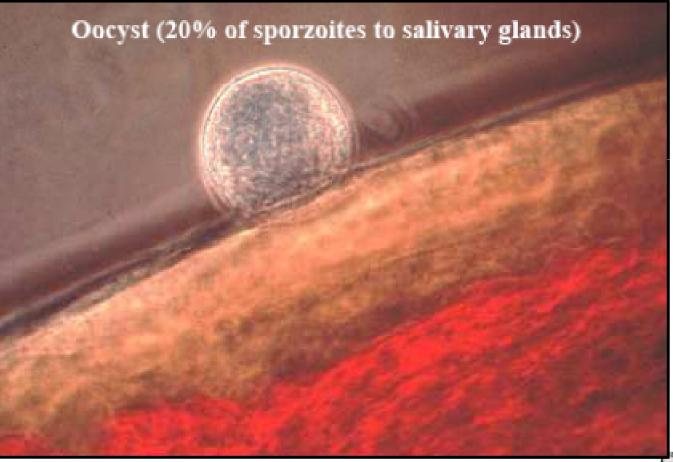
### Mosquito: Sexual

### • Man: Asexual





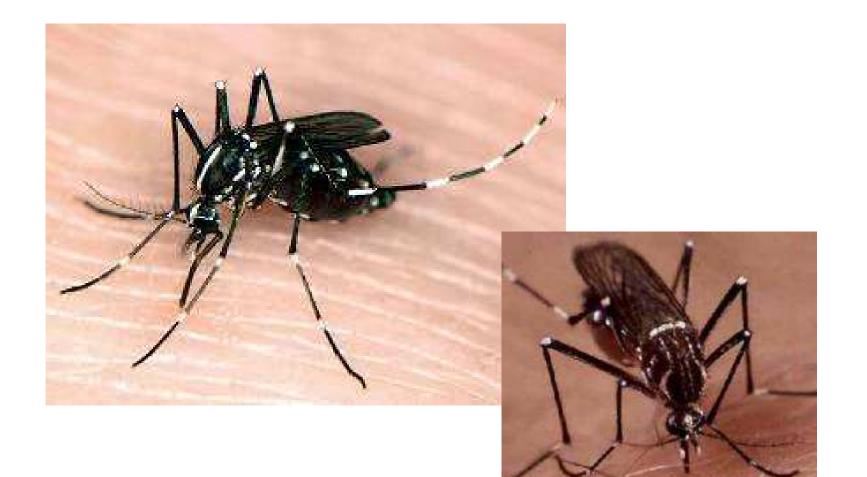




# Life cycle of Plasmodium

- Mosquitoes acquire gametocyte-stage parasites.
- 2. The parasites transform to ookinetes, then oocysts, which produce sporozoites.
- 3. **Sporozoites** invade the salivary glands and are transmitted to new host.






# Life cycle - Sexual stage







# **Dengue virus vectors**







# Feeding Habits – Ae. albopictus

- Aedes albopictus prefers to feed and rest outdoors.
- Feeds during daytime (diurnal)
- Feeds on any vertebrate host but prefers humans







# Aedes comparison



Ae. aegypti



Ae. albopictus

Environment

**Breed/feed** 

**Container type** 

**Biting peak** 

Host



Urban

Indoors(< 200m)

Artificial

Daytime

Human

< 200m

**Sylvatic** 

Outdoors

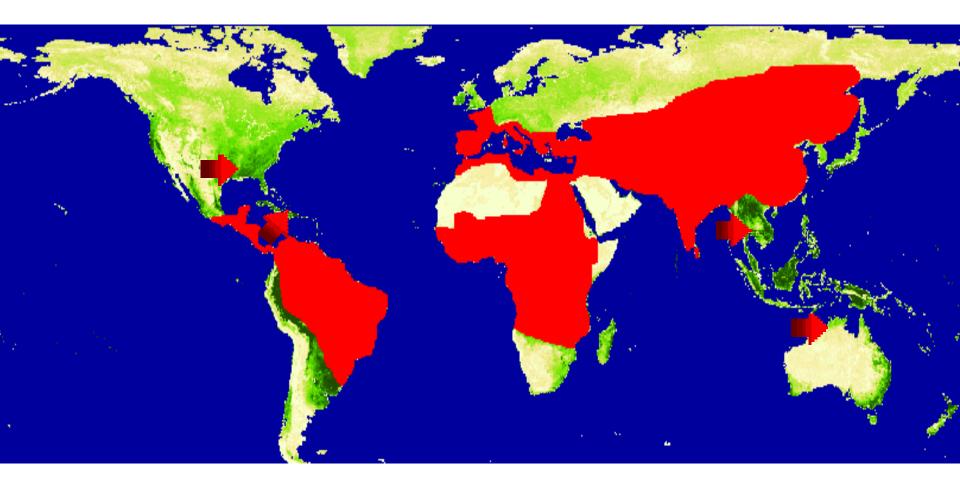
Natural and artificial

Dusk

Human/Vertebrates

< 600m



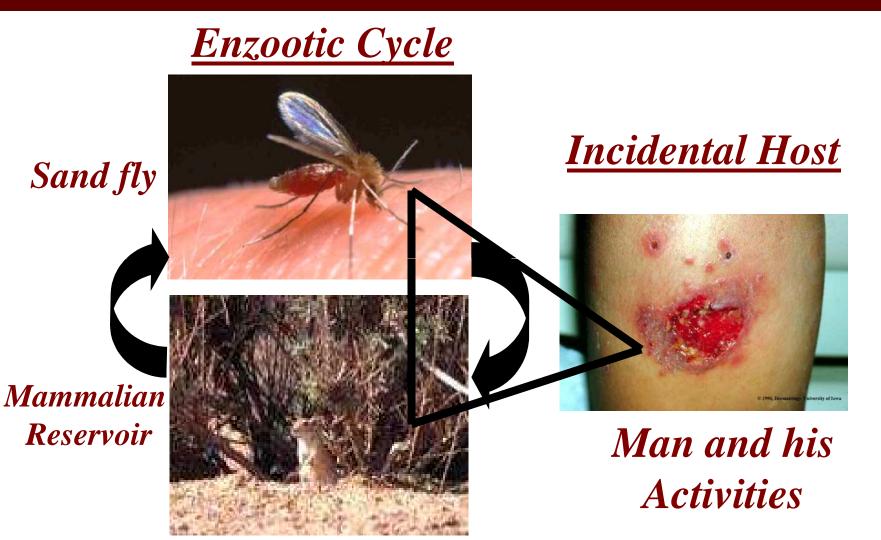

# Leishmaniasis







### Global distribution of the leishmaniases










# **The Epidemiological Triangle**









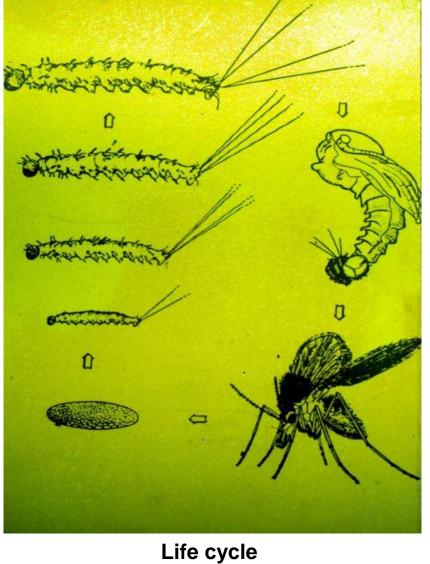
### Chenopods

L. major enzootic cycle

# **Characteristics**

- Small (2-3 mm)
- Brown (but appear white when illuminated)
- Wings held in erect V-shape
- Nocturnal
- Do not hover
- Silent
- Painful bite






### Life cycle and developmental stages



Fourth instar larvae

Eggs





Adult male





### Sand flies – vital requirements

- Larvae breed in soil (<u>not</u> aquatic)
- Only females take blood, from a variety of vertebrate species
- Rest during the day in dark, humid microhabitats
- Both sexes require sugar as an energy source





### Sand flies resting on wall of a chicken house







### Rain Forest, desert, mountains, cities



# **Tick-borne Diseases**

### African tick-bite fever (ATBF)

- an emerging infectious disease endemic in sub-Saharan Africa
- the most commonly encountered rickettsiosis in travel medicine.
- Rickettisia africae
- Amblyomma variegatum



1. Ndip et al., 2011. Risk Factors for African Tick-Bite Fever in Rural Central Africa. *Am. J. Trop. Med. Hyg.* 

2. Raoult et al., 2001. *Rickettsia africae , a tick-borne pathogen in travelers* to sub-Saharan Africa . *N Engl J Med* 





# **Prevention**





### WHAT CAN YOU DO TO MINIMIZE RISK?

- Find out what the priority risks are in your area before you deploy.
- Understand the vectors so you can avoid them.
- Modify behaviors to minimize contact
  - Use **repellents**
  - Sleep under insecticide treated netting
  - Wear permethrin treated uniforms
- Take malaria chemo (if warranted)
- Call for help:
  - AFPMB (CLO) : afpmb-webmaster@osd.mil: subject CLO question
  - PHC, Ento Division





### **Standard Military DEET Skin Repellent**





33% Controlled-Release DEET Lotion: NSN 6840-01-284-3982

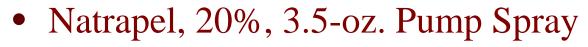


Highest rated skin repellent available (Consumer Reports, May 2003)

# **CDC recommended repellents**

• Of the active ingredients registered with the EPA, products containing these active ingredients typically provide longer-lasting protection than others:

### **DEET, Picaridin, and IR3535**


• The three non-DEET compounds work as well as or nearly as well as DEET when they are used at higher concentrations (~20%).



http://www.cdc.gov/ncidod/dvbid/westnile/repellentupdates.htm http://www.epa.gov/pesticides/health/mosquitoes/ai\_insectrp.htm http://www.entomology.wisc.edu/mosquitosite/topicalrepel.html



# **Picaridin**



- Cutter Advanced, 7%, 6-oz. Pump Spray
- Off Skintastic, 5%, 6-oz. Pump Spray







Institute of Research



# Picaridin



- Picaridin is a colorless, nearly odorless liquid active ingredient that is recommended by the CDC as an alternative to DEET.
- Lab and field studies of products containing picaridin (10-20%) indicate good protection.
- 7.5% products are not as effective.







### IR3535

- IR3535 is recommended by the CDC as an alternative to DEET.
- IR3535 is a synthetic insect repellent structurally similar to a natural amino acid, beta-alanine and is classified as a biopesticide by the EPA.
- This compound has been used as a mosquito repellent in Europe and Asia for 10-20 years
- Approved by the U.S. EPA in 1999.
- IR3535 is currently available in the Avon Skin-so-soft Bug Guard 7.5%





# **Treated Uniforms**



- A new training briefing on permethrin-treated Flame-Resistant Army Combat Uniforms (FR ACUs) has been released –CAC REQUIRED
- https://www.us.army.mil/s uite/doc/28282876
- https://peosoldier.army.mil /newpeo/ContactUs/faqs/fr acu.asp





# **Bed nets**



Enhanced BedNet System 3740-01-546-4354 Improved Bed Net System 3740-01-543-5652 Bed net, Pop-up, self-supporting Coyote Brown 3740-01-518-7310 OD Green (Camo) 3740-01-516-4415

> The pop-up bed net is factory-treated with permethrin and has much finer mesh than the standard military bed net.









- No evidence that eating garlic or taking vitamin B tablets reduces mosquito bites.
- Dark clothing is usually more attractive than light colored clothing.
- Drinking alcohol may increase your attractiveness to mosquitoes.



- Some mosquito control devices use repellents to protect a small outdoor area like a patio.
- No products approved by the EPA for indoors.
- Effective devices which use **allethrin** or other **pyrethroids** to repel mosquitoes include:
  - Mosquito coils, and
  - ThermaCell (TM) Mosquito Repellent System.















- Citronella candles are weak.
- Geraniol candles can provide 1 meter of protection.









• Sonic and electronic devices do not work.







# 

Soldier Health

World Health