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ABSTRACT

Motivated by the desire to accurately perform Voice Activ-
ity Detection (VAD) in the noisy environments encountered
by users of mobile devices, this work applies biologically-
inspired models of human auditory filtering and hearing to
a statistical derivation of the VAD technique, applying VAD
to a newly-created dataset representative of realistic, every-
day scenarios. Two different models, with varying degrees
of complexity, are used as a front-end to a statistical voice-
detection backend, and accuracies are compared. The more
biologically-accurate system achieves an accuracy of 67%,
outperforming the simpler model.

1. INTRODUCTION

Voice activity detection (VAD) systems, which detect the
presence or absence of speech in an audio stream, are a ma-
ture technology used in a variety of applications. Common
uses are in VoIP and teleconferencing systems, where they
are used to determine when to send packets over the net-
work, as audio not containing speech does not need to be
transmitted. In low-noise environments, such as business
meetings and conferences, VAD systems have very high lev-
els of accuracy, but this accuracy is degraded by the presence
of environmental noise.

The ability to accurately apply VAD in a high-noise en-
vironment can be of value, however. This work is motivated
by an application to psychiatry, in which patients undergo-
ing treatment have data from their mobile devices mined,
processed, and presented to their doctors to provide supple-
mentary information to aid in diagnosis and treatment. Con-
sider, for example, a patient undergoing treatment for social
anxiety disorder, where it is known that patients who fail
to respond to treatment will continue to avoid social inter-
action. If the presence of speech can be used as a proxy
for social interaction, an objective measure of time spent
in the presence of speech can provide clinicians with use-
ful information pertinent to the patient, such as response to
treatment.

This work takes steps towards the development of a VAD
system which has enough noise resilience to process audio
recorded from a single microphone, in noisy environments,
and where the microphone may be muffled (e.g., the device
is within a pocket). The novelty of this work is that it uses
biologically-inspired models for speech and human hear-
ing and applies them to VAD in a mobile setting. Existing
work that has explored biologically-inspired algorithms has
typically been validated against synthetic benchmarks (with
noise/sounds artificially added to otherwise clean speech),
and not against audio representative of the more realistic set-
tings.

The rest of the paper is structured as follows. Section 2
gives a description of the VAD system we have adapted
from [1]. Section 3 describes the experimental setup we
have used to quantify the accuracy of the system and also
presents those results. Finally we conclude the report in Sec-
tion 4.

2. SYSTEM ARCHITECTURE

The system can be divided into two parts: a front-end that
performs digital filtering and processing of the incoming au-
dio in a manner inspired by the operation of the human hear-
ing system, producing a representation known as a cochlea-
gram, and a back end that takes as input the time-series data
of the cochleagram and classifies it as speech or non-speech.

2.1. Cochleagram Front-End

The cochleagram is a time-frequency representation of au-
dio, similar to a spectrogram [2]. It depicts the distribu-
tion of spectral components of audio by computing the fir-
ing rates of auditory nerve cells across the basilar membrane
of the ear. Since the basilar membrane is naturally tuned to
different frequencies along its length, the spatial distribution
of nerve cells along its length produces patterns of activities
that are essentially tuned to different frequency bands, just
as a filterbank can be used to compute a spectrogram.



The cochleagram in this work was computed as follows.
Digitized audio, in PCM format, is passed through a bank
of gammatone filters. Each gammatone filter models the
resonance of a particular location of the basilar membrane,
where the impulse response of the gammatone filter is as
follows:

g(t) = tN−1e−2πbt cos(2πfct+ φ)u(t)

where N is the order of the filter, b is the bandwidth of
the filter, fc is the center frequency, φ is the phase offset, and
u(t) is the unit step function. A fourth-order gammatone
filter was shown to match experimentally-derived data for
the auditory filters in human hearing [3]. The bandwidth
of the gammatone filter is set equal to empirically-derived
values for the human hearing critical-bands at that particular
center frequency [4].

Multiple gammatone filters (this number is parameter-
izable) were used to form a filterbank over a parameteriz-
able range, where the center frequencies of the filters were
chosen such that they are evenly spaced on the ERB-rate
scale [4]. Spacing the center frequencies in such a manner
ensures that each filter in the bank has roughly an equivalent
bandwidth to human auditory filters.

Finally, the output of each gammatone filter was fed through
a Meddis hair-cell model to capture how the inner ear cells
transduce vibrations in the basilar membrane into action po-
tentials [5]. The model used does not produce individual
action potentials/spikes, but instead computes the firing rate
that would be observed. A simpler cochleagram model was
also produced, which instead of using the Meddis hair cell
model for transduction simply takes the cube-root of the ab-
solute value of the output of each gammatone filter. This
simpler model captures how auditory nerve cells both per-
form rectification and loudness/amplitude compression of
the signal produced by the basilar membrane (if one imag-
ines the vibration of the basilar membrane as a signal).

Finally, for both versions of the cochleagram, the frame
rate of the cochleagram was decimated by a factor of x (by
keeping only every x-th frame) to ease the computational
load in the back-end. This is commonly applied in speech-
processing algorithms without a loss in quality as long as the
value of x is reasonable.

2.2. Statistical VAD Back-End

A statistical approach is used to perform the voice activity
detection, in the form of a hypothesis test, with hypothesis
H1 representing speech is present in the frame, and hypoth-
esis H0 representing speech is absent from the frame. Both
the speech and non-speech cochleagram frames are modeled
as N-dimensional Gaussian random processes (where N is
the number of channels cochleagram/filterbank).

Three important assumptions are made here. Firstly, that
the dimensions are independent of one another, which is not

true but a reasonable approximation since the filters in the
filterbank are tuned to separate center frequencies with not
much spectral overlap. Secondly, that frames of the cochlea-
gram are independent from one another in time - this also
not true but done to simplify the analysis. Finally, that the
means of these random variables are zero. This appears to
be inherited from a Gaussian statistical model applied to the
same problem formulated for the use of Fourier expansion
coefficients of audio (i.e., the spectrogram) [6].

Using this statistical formulation, the likelihood func-
tions are the following:
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whereG is the entire frame (all channels) of the cochleagram,N
is the number of channels in the cochleagram, Gc is the
value of the cochleagram in filter channel c, and λN (c) and
λS(c) are the noise and speech variances in channel c, re-
spectively. Note that λN and λS are the a-priori variances,
and therefore need to be trained or otherwise estimated from
a sample of the population of noise and speech audio.

For each frame of the cochleagram, the log-likelihood
ratio is computed as follows:

log Λ =
1

N

N∑
c=1

log

(
p(G|H1)

p(G|H0)

)

A likelihood ratio test is then performed to classify the
frame as containing speech or non-speech by applying a
threshold θ to the log-likelihood ratio as follows:

frame =

{
speech, log Λ > θ

non-speech, log Λ ≤ θ

It is worth noting that a simple enhancement was applied
here. After computing the log-likelihood ratios of every
frame (but before classification via application of a thresh-
old), these values were smoothed by applying an n-point
moving average as in [1]. This is motivated by the fact
that likelihood ratio values will likely jump rapidly relative
to their neighboring points, yet in reality the audio is not
rapidly transitioning between speech and non-speech classes
at a rate of milliseconds. This helps to address the loss in
accuracy introduced by the second assumption made in the
modeling (i.e., that the frames are independent in time).



3. EVALUATION AND RESULTS

3.1. Experimental Setup

The system in Section 2 was implemented using MATLAB
and was used to perform VAD upon a newly-made corpus
of audio. The following two subsections describe the audio
that was recorded for use as a dataset and the various values
of parameters and settings used in the implementation of the
system.

3.1.1. Dataset

Audio was recording using a Nexus 5 smartphone in the fol-
lowing format: WAV, 16 bit (signed) samples, little-endian,
16kHz sample rate. Three hours of audio was recorded, with
roughly 47% of that containing speech. After recording,
the audio was hand-transcribed to identify which times con-
tained speech. Table 1 contains a description of the recorded
audio used in the dataset. Note that recordings 5, 7, and 8
did not contain speech, while all others contained a mix of
both speech and non-speech.

Table 1. Description of audio in the dataset.
No. Length (mm:ss) Setting Phone location

1 24:31 Meeting On a table
2 23:50 Meeting On a table
3 27:30 Meeting On a table
4 11:21 Meeting On a table
5 11:52 Walking outside In a jacket
6 21:56 Meeting In pants pocket
7 14:45 In office On desk
8 48:32 In office On desk

Due to the heavy computational load of this processing
and the inefficiency of MATLAB, it was difficult to process
more than any one single file using a significant number of
channels. Therefore, the results that follow will be based
on the most difficult to classify recording that contained a
mix of speech and non-speech - recording 6. The first half
(roughly 12 minutes) of recording 6 was partitioned into
training data and the second half into testing data.

3.1.2. Parameters and Settings

The following parameters and settings were used in the im-
plementation of the VAD system and in all following exper-
iments:

• Gammatone filterbank: N fourth-order filters evenly
spaced on the ERB-rate scale from 20Hz to 5000Hz
were used (where the value of N will be swept in the
following experiments).

• Meddis hair-cell model: Parameters for simulating medium
spontaneous-rate fibers from [5] were used.

• Frame rate of the cochleagram: The frame rate was
decimated by a factor of 160 to yield 100 frames of
the cochleagram per second.

• Statistical model parameters: Estimates of the noise
and speech variances were produced using the Maxi-
mum Likelihood Estimate of the cochleagram frames
produced from the training data.

• Thresholds for likelihood-ratio testing: 100 threshold
values were swept, linearly spaced from the minimum
log-likelihood ratio value of any test frame encoun-
tered to the maximum.

• Log-likelihood ratio smoothing: Values were smoothed
by applying a moving average over an 11-frame win-
dow (0.1 second window).

3.2. Experiment 1: VAD using Meddis-based cochlea-
gram

In this experiment, the cochleagram was computed using the
Meddis hair cell model. The number of filterbank chan-
nels was swept in powers of two, from 4 to 32. VAD was
performed upon each frame of the test data, and using the
true classes of each frame from the transcripts as reference
(i.e., speech or non-speech), true positives and false pos-
itives were counted. Figure 1 shows the family of ROC
curves for this experiment.

Fig. 1. ROC curve for VAD performed using a Meddis hair
cell-based cochleagram.

The maximum accuracy achieved by this system is pre-
sented in Table 2, where accuracy is defined here as the sum
true positives and true negatives divided by the total number
of observances (i.e., frames).

3.3. Experiment 2: VAD using simple Cochleagram

This second experiment was designed to assess what the
impact of using a simpler, non-biologically inspired model
would be. To do so, the Meddis hair cell model for trans-
duction was replaced with the simpler absolute-value and



Table 2. VAD Accuracy using the Meddis hair cell-based
cochleagram.

No. of Channels Accuracy
4 57%
8 64%

16 56%
32 67%

cube root method described in Section 2. As in the last ex-
periment, the number of filterbank channels was swept in
powers of two, from 4 to 32.

Fig. 2. ROC curve for VAD performed using cube root-
based cochleagram.

Table 3. VAD Accuracy using the Meddis hair cell-based
cochleagram.

No. of Channels Accuracy
4 55%
8 55%

16 59%
32 60%

The maximum accuracy achieved by this system is pre-
sented in Table 3. It is clear that this system performs much
worse that the system which uses the Meddis hair cell model
in the computation of the cochleagram. One possible reason
for this is due to the fact that the cube root-based model
of transduction only captures the rectification and amplitude
compression capabilities of auditory nerve cells, but not the
other properties. Properties such as adaptation might be par-
ticularly helpful in VAD since adaptation serves to greatly
accentuate spikes in neural activities when “new” signals are
present, and the sudden onset of a voice might be one such
cause of a spike.

4. CONCLUSION AND FUTURE WORK

Motivated by the desire to accurately perform VAD in the
noisy environments encountered by users of mobile devices,
this work applied biologically-inspired models of human au-
ditory filtering and hearing to statistical derivation of the

VAD technique. It was shown that the more biologically-
accurate computation of the cochleagram, performed using
the Meddis hair cell model, outperforms more simple cochlea-
gram model based upon a cube-root approximation.

A more thorough analysis on a more significant dataset
is the first improvement that the authors would like to pur-
sue. Due to the computational limits of MATLAB, a more
efficient, multithreaded and natively-coded prototype could
enable such work. Specifically, it would be interesting to
explore how the performance of the two systems compare
when using a large number of filter channels. Furthermore,
the application of the system in a wide range of environ-
ments, which was a guiding motivation for this work, was
not fully explored. It would be interesting to see how the
estimates of the statistical parameters used in the back end
generalize to a broad range of noise sources. Lack of per-
formance here might motivate the use of a more complex
statistical model.

5. REFERENCES

[1] M. Tu, X. Xie, and X. Na, “Computational auditory scene anal-
ysis based voice activity detection,” in Pattern Recognition
(ICPR), 2014 22nd International Conference on, Aug 2014,
pp. 797–802.

[2] D. Wang and G. Brown, Fundamentals of Computational Au-
ditory Scene Analysis. Wiley-IEEE Press, 2006, pp. 1–44.

[3] R. Patterson, I. Nimmo-Smith, J. Holdsworth, and P. Rice,
“An efficient auditory filterbank based on the gammatone func-
tion,” MRC Applied Psychology Unit, Cambridge, Tech. Rep.,
1987.

[4] B. R. Glasberg and B. C. Moore, “Derivation of
auditory filter shapes from notched-noise data,” Hearing Re-
search, vol. 47, no. 1, pp. 103 – 138, 1990. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/037859559090170T

[5] R. Meddis, M. J. Hewitt, and T. M. Shackleton, “Implementa-
tion details of a computation model of the inner hair cell audi-
tory nerve synapse,” The Journal of the Acoustical Society of
America, vol. 87, no. 4, 1990.

[6] Y. Ephraim and D. Malah, “Speech enhancement using a min-
imum mean-square error log-spectral amplitude estimator,”
Acoustics, Speech and Signal Processing, IEEE Transactions
on, vol. 33, no. 2, pp. 443–445, Apr 1985.


