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In this supplementary material, we present an extended exposition of the mathematical framework that supports the
proposed kernelization pipeline for the sampling covariance estimator Ŝ.

Let n the total number of joints of the considered motion capture (MoCap) system and let xi(t) = [xi(t), yi(t), zi(t)]
> the

recorded x, y, z coordinates of the i-th joint at time t, for every i = 1, . . . , n and t = 1, . . . , T. Globally, for every t = 1, . . . , T ,

x(t) = [x1(t),x2(t) . . . ,xn(t)]
>

= [x1(t), y1(t), z1(t), x2(t), y2(t), z2(t), . . . , xn(t), yn(t), zn(t)]
>

is the 3n column vector stacking all the temporal acquisitions of the n joints at time t.
Since resulting from an acquisition process, x(t) is certainly affected by a degree of uncertainty related, for instance, to the

level of noisy corruption which perturbs an arbitrary coordinate of a generic joint. Thus, it is natural to think about x(t) as a
random vector in R3n and therefore assume that such level of uncertainty is modelled by a stationary probability distribution
π from which x(1), . . . ,x(T ) are independently sampled. Then, as a classical tool in probability theory and statistics, the
covariance matrix S (also known as dispersion matrix or variance-covariance matrix) is used to measure how any pair of
joint coordinates mutually change in time. Precisely, if we assume that π has finite second momentum, so that the integrals∫∞
t=0
‖x(t)‖π(x(t))dt and

∫∞
t=0
‖x(t)‖2π(x(t))dt are both finite, then S(π) is the 3n× 3n matrix defined as

S(π) =

∫ ∞
t=0

(
x(t)−

∫ ∞
s=0

x(s)π(x(s))ds

)(
x(t)−

∫ ∞
s=0

x(s)π(x(s))ds

)>
dt

=

∫ ∞
t=0

x(t)x(t)
>
π(x(t))dt−

(∫ ∞
t=0

x(t)π(x(t))dt

)(∫ ∞
t=0

x(t)π(x(t))dt

)>
. (1)

Despite the formal correctness of equation (1), in real case applications, it is not actually applicable since requiring a continuous
timestamp t of acquisition which is clearly unfeasible. Last but not least, we do not know, in general, the distribution π according
to which the data x(1), . . . ,x(T ) are sampled. Thus, as a natural estimator for S, one typically exploits the sampling covariance
estimator

Ŝ(X) =
1

T − 1

T∑
t=1

(
x(t)− 1

T

T∑
s=1

x(s)

)(
x(t)− 1

T

T∑
s=1

x(s)

)>
, (2)

where X represents the 3n × T data matrix which encodes x(1), . . . ,x(T ) in a way that Xit is the i-th component of x(t).
The multiplicative factor 1

T−1 represents the Bessel correction so that Ŝ(X) is an unbiased estimator of the original covariance
matrix S(π). For the sake of simplicity, since in the rest of our discussion we will focus on Ŝ(X) only, we will simply refer to
it as covariance, omitting both “sampling” and “estimator” attributes. In order to support what follows, we now rewrite Ŝ in a
matrix expression.

Proposition 1. Let P the T × T symmetric matrix whose generic (s, t) entry is

Pst =
δst
T − 1

− 1

T (T − 1)
=


1

T
if s = t

1

T 2 − T
if s 6= t,

(3)



where δst denotes the Kronecker symbol (δst = 1 if s = t, vanishing otherwise). Then, we get

Ŝ(X) = XPX>, (4)

Proof. Let us define with sij the generic entry of Ŝ(X) of row i and column j. It results

sij =
1

T − 1

T∑
t=1

(
Xit −

1

T

T∑
s=1

Xis

)(
Xjt −

1

T

T∑
r=1

Xjr

)

=
1

T − 1

T∑
t=1

XitXjt −
1

T (T − 1)

T∑
t=1

T∑
r=1

XitXjr −
1

T (T − 1)

T∑
t=1

T∑
s=1

XjtXis +
1

T 2(T − 1)

T∑
t=1

T∑
s=1

T∑
r=1

XisXjr (5)

In the last summation in the right side of (5) there is no addend which depends on t, thus

sij =
1

T − 1

T∑
t=1

XitXjt −
1

T (T − 1)

T∑
t=1

T∑
r=1

XitXjr −
1

T (T − 1)

T∑
t=1

T∑
s=1

XjtXis +
1

T (T − 1)

T∑
s=1

T∑
r=1

XisXjr (6)

since the summation over t counts T elements and we also simplified with the T in the denominator. In the right side of (6)
the second and fourth addends are equal in magnitude and opposite in sign: this follows by modifying the summation index in
the fourth addends according to the transformation s 7→ t. Therefore

sij =
1

T − 1

T∑
t=1

XitXjt −
1

T (T − 1)

T∑
t=1

T∑
s=1

XjtXis.

We can exploit the properties of Kronecker symbol, consequently obtaining

sij =
1

T − 1

T∑
t=1

T∑
s=1

XisδstXjt −
1

T (T − 1)

T∑
t=1

T∑
s=1

XjtXis

=

T∑
s=1

T∑
t=1

Xis

(
δst
T − 1

− 1

T (T − 1)

)
Xjt (7)

From (7), for every s, t = 1, . . . , T the definition Pst according to the first equality of (3) ensures that the second one is
immediately verified (this is easily checked with a few algebra). Thus, (7) rewrites

sij =

T∑
s=1

T∑
t=1

XisPstXjt =

T∑
s=1

T∑
t=1

XisPst

(
X>
)
tj

(8)

which produces the thesis thanks to the formal definition of the row-by-column matrix product and the arbitrary indexes i and
j considered.

As a classical property of covariance Ŝ, it can well capture linear interdependencies between variables. Indeed, if the greater
value of variable i corresponds with an increased variable j, Ŝ tends to show a similar trend and this reflects in sij > 0. In
the opposite situation when variable i increases and variable j decreases, then sij < 0. Thus, the sign of sij is indicative
of linear/anti-linear tendencies between i-th and j-th variables. Also, normalized versions of the covariance (e.g., McPerson’s
correlation coefficient) are also able to quantify how such tendencies are strong. Anyway, covariance is not able to understand
more general relationships than the linear ones and, unfortunately, this can be insufficient when dealing with real data in
applicative scenarios. Thus, as a naive approach to solve such an issue, one might apply a preliminary encoding of the raw data
x(t) by computing a suitable feature transformation Φ(x(t)) for t = 1, . . . , T . As a result, one gets

Ŝ(Φ(X)) = Φ(X)PΦ(X)>, (9)

where we defined Φ(X) the matrix whose (i, t)-th entry is the i-th component of Φ(x(t)). Formally, (9) looks for linear
relationships in the augmented feature space by means of Φ and, if a suitable feature map is designed, this can be therefore
equivalent to model arbitrary interdependencies in the original data space. However, as the main bottleneck with (9) is, generally,
the dimension of the feature space is much higher than the original one: computationally, Φ(X) can be extremely onerous to
compute and storage. Also, it totally precludes the case of infinite dimensional feature spaces, although they are quite common
in practice: indeed, in this case, Φ can not be exactly computed and, for instance, has to be approximated with a finite surrogate.

As a different perspective, to solve the aforementioned issue, many established algorithms (such as support vector machines
or principal component analysis) observed that rather than the explicit computation of the feature map φ, the quantity that has



to be computed is instead the dot product between feature maps and this is classically done via a kernel function. Formally, a
kernel function k : R3n × R3n → R is defined to be symmetric and positive definite and, thanks to Mercer’s theorem [1],

k(x, z) =
∑
n∈N

λnφn(x)φn(z) (10)

where (λn, φn)n∈N is the countable eigen-system of the Hilbert-Schmidt operator related with k, where the eigenvalues λn are
non-negatives and λn ≥ λn+1 for every n. Clearly, from (10), if one defines H the Hilbert space `2(N) of square-summable
sequences and define Φ(x) = (

√
λnφn)n∈N, we obtain

k(x, z) = 〈Φ(x),Φ(z)〉H, (11)

which is exactly equation (5) in the paper. By jointly applying (11) and (9), we can rewrite sij , the (i, j)-th entry Ŝij(Φ(X)),
in the following manner

Ŝij(Φ(X)) =

T∑
s=1

T∑
t=1

Φi(x(s))PstΦj(x(t)) =

T∑
s=1

T∑
t=1

〈Φ(x(s)), ei〉HPst〈Φ(x(s)), ej〉H (12)

where ej denotes the j-th element of the orthonormal basis of H which is clearly well defined since ej ∈ `2(N). If we now
assume that, for any j, there exists hj ∈ R3n such that Φ(hj) = ej we can rephrase (12) in

Ŝij(Φ(X)) =

T∑
s=1

T∑
t=1

〈Φ(x(s)),Φ(hi)〉HPst〈Φ(x(s)),Φ(hj)〉H =

T∑
s=1

T∑
t=1

k(x(s),hi)Pstk(x(t),hj). (13)

Hence, if we define K[X,h] as the matrix whose generic (i, t)-th entry is k(x(t),hi) we can finally conclude

Ŝ(Φ(X)) = K[X,h]PK[X,h]
>
, (14)

which is precisely the claim of Lemma 1 in the paper. Such theoretical statement is relevant since, if defined Ŝ(k) =
K[X,h]PK[X,h]

>, equation (14) consists in an operative formula to compute the sampling covariance Ŝ(Φ(X)) by means of
the equivalent expression Ŝ(k) which, additionally, involves the kernel function k only and not requires the explicit usage of Φ.
Despite of this, such expression grounds on the assumption

Φ(hi) = ei for every i = 1, . . . ,dim(H) (15)

which is actually restricting in general since it enforces the range of Φ to include all the elements {ei : i = 1, . . . ,dim(H)}.
Indeed, since we want to perform the computation of Ŝ in terms of the kernel only, due to the fact the latter actual implicitly
define the shape of Φ, in the paper, our proposed solution to recover the applicability of (15) is to fix the family of kernel
function adopted. Thus, we assume that there exist non-negative coefficients a` ≥ 0 for ` ∈ N such that

k(x, z) =

∞∑
`=0

a`〈x, z〉`, (16)

where 〈x, z〉 is the usual inner product in R3n. It is notable that (16) includes both finite and infinite linear combinations,
defines a proper kernel function in the sense of Mercer’s theorem [1]. Also, equation (16) generalizes commonly used kernels:
for instance, the (in)homogeneous polynomial kernel k(x, z) = 〈x, z〉d + β of degree d ∈ N and bias β ≥ 0 follows from the
choices a0 = β, ad = 1 and a` = 0 otherwise. Further, since playing a crucial role in the experimental part of the paper (Section
4.), we shall consider the exponential-dot product kernel

k(x, z) = exp

(
〈x, z〉
σ

)
=

∞∑
`=0

〈x, z〉`

σ``!
(17)

is the case of a` = 1
σ``!

> 0. for every σ > 0. In correspondence of the aforementioned kernel functions, a random class of
feature maps Ψ is devised in the paper so that the linear kernels 〈Ψ(x),Ψ(z)〉 is an unbiased estimator and of k(x, z), also
uniformly approximating with the additional assumption that the data belong to a compact set of R3n. Most importantly, it can
be shown that Ψ fulfils the assumption (15). Precisely, Ψ : R3n → RM is defined in a way that each component Ψ1, . . . ,ΨM

is an independent and identical distributed copy of the function which associate

R3n 3 x 7−→
√
aNpN+1

N∏
j=1

〈ωj ,x〉



in correspondence of a random integer N where N = n is sampled with probability
1

pn+1
for some hyper-parameter p > 1. If

we thus compute the expectation of the linear kernel induced by Ψ over ω and N we get

Eω,N [〈Ψ(x),Ψ(z)〉] = Eω,N

[
1

M

M∑
m=1

Ψm(x)Ψm(z)

]
=

1

M

M∑
m=1

Eω,N [Ψm(x)Ψm(z)] (18)

since the expectation is linear. Now, by using the definition of Ψ and Lemma 1 of the paper, we obtain

Eω,N [〈Ψ(x),Ψ(z)〉] =
1

M

M∑
m=1

∞∑
n=0

1

pn+1
anp

n+1〈x, z〉n =

∞∑
n=0

an〈x, z〉n = k(x, z), (19)

ensuring that the bias of 〈Ψ(x),Ψ(z)〉 as estimator of k(x, z) vanishes. Additionally, it easily checkable by the reader that all
the results in [3] are still valid in our case, due to the fact that we can replace [3, Lemma 7] with Lemma 1 in our paper.
Therefore, Lemma 8, 10 and 11 in [3] are applicable, giving the following statement of uniform approximation of k(x, z) by
means of 〈Ψ(x),Ψ(z)〉 and actually retrieving [3, Theorem 12].

Theorem 1. Let assume that k(x, z) as in (16) is a dot product kernel over Ω where there exists R > 0 such that, for every
x ∈ Ω, the Euclidean norm ‖x‖ of x satisfies ‖x‖ ≤ R. Then, for every small constant ε > 0, the relationship

sup
x,z∈Ω

|〈Ψ(x),Ψ(z)〉 − k(x, z)| ≤ ε (20)

holds with probability 1 − 2 exp

(
−Mε2

8C2

)(
32RL

ε

)6n

, under the assumption that M is inferiorly bounded by
3n

ε2
log

(
1

ε

)
,

while L and C are a quadratic and linear function of R, respectively.

In a few words, Theorem 1 certifies that with great probability, 〈Ψ(x),Ψ(z)〉 is a uniform approximation for k(x, z). In
addition, the map Ψ actually fulfils the assumption (15) as certified by Proposition 1 in the paper and, globally, this solves
all theoretical issue. Additionally, the random feature map Ψ is much more convenient than Φ for the reason that the system
Φ(hj) = ej has dim(H) equations and unknowns (thus can be infinite dimensional). Thus, on the contrary, for Ψ such dimension
is just M : the aforementioned theorem enforces us to choose M in a way that M ≥ 3n and in the experimental part of the
paper we precisely fixed M = 3n in order gather a low dimension for the Ŝ(k). However, at the same time, such choice was
able to score the strong performance registered for all the MoCap dataset considered in the paper.
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