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OPEN WHITNEY UMBRELLAS ARE LOCALLY

POLYNOMIALLY CONVEX

OCTAVIAN MITREA AND RASUL SHAFIKOV

(Communicated by Franc Forstneric)

Abstract. It is proved that any smooth open Whitney umbrella in C2 is
locally polynomially convex near the singular point.

1. Introduction

The goal of this paper is to give a positive answer to a conjecture of Ne-
mirovksi [10] concerning local polynomial convexity of open Whitney umbrellas.
Recall that a standard open (or unfolded) Whitney umbrella is the map π : R2

(t,s) →
R4

(x,u,y,v)
∼= C2

(z=x+iy,w=u+iv) given by

(1.1) π(t, s) =

(
ts,

2t3

3
, t2, s

)
.

The map π is a smooth homeomorphism onto its image, nondegenerate except at
the origin. It satisfies π∗ωst = 0, where ωst = dx ∧ dy + du ∧ dv is the standard
symplectic form on C2, hence Σ := π(R2) is a Lagrangian embedding in C2, with an
isolated singular point at the origin. If φ : C2 → C2 is a local symplectomorphism,
which we may assume, without loss of generality, to preserve the origin, then the
image φ(Σ) is called an open Whitney umbrella. It is called locally polynomially
convex at the origin if there exists a basis of compact neighbourhoods of the origin
in φ(Σ) that are polynomially convex (see the next section for details). Our main
result is the following:

Theorem 1.1. Let φ : C2 → C2 be an arbitrary smooth symplectomorphism. Then
the surface φ(Σ) is locally polynomially convex at the origin.

This result was proved for a generic real-analytic φ in [13] and for a generic
smooth φ in [14]. Our theorem establishes polynomial convexity in full generality
in this context. One immediate application of our main result is the following.

Corollary 1.2. For Σ and φ as in Theorem 1.1, there exists ε > 0 sufficiently
small, such that any continuous function on φ(Σ) ∩ B(φ(0), ε) can be uniformly
approximated by holomorphic polynomials.
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For the proof of Theorem 1.1 our approach is similar to that in [13]: one con-
structs an auxiliary real-analytic hypersurface M that contains the standard um-
brella Σ. The hypersurface M is singular at the origin, but it is smooth and strictly
pseudoconvex at all other points. Then one considers the so-called characteristic
foliation on φ(Σ) \ {0} with respect to φ(M). It turns out that certain topologi-
cal configurations of the phase portrait of the foliation guarantee local polynomial
convexity of φ(Σ) at the origin. Direct computations yield a system of ODEs that
determines the phase portrait, however, the system is degenerate, and standard
tools from dynamical systems cannot be directly applied. In [13] the authors used
the theory of normal forms of Bruno [4] and a result of Dumortier [5] to determine
the phase portrait of the characteristic foliation. This was generalized to the smooth
case in [14]. In our approach we use a result of Brunella and Miari [3] to reduce the
problem of determining the phase portrait of φ(Σ) to that of the so-called principal
part of the vector field arising from the foliation. Under certain nondegeneracy con-
ditions on the principal part, its phase portrait is topologically equivalent to that
of the original vector field. The system obtained in [13] has a degenerate principal
part, and therefore, the result in [3] could not be applied in that case. However,
a suitable modification of the auxiliary hypersurface M , introduced in this paper,
gives a system with a nondegenerate principal part. Our final calculations of the
phase portrait of the principal part also use Bruno’s normal form theory.

The proof of the corollary uses local polynomial convexity of the umbrella estab-
lished in Theorem 1.1 and the result of Anderson, Izzo and Wermer [1]. The proof
of Corollary 1 in [13] goes through in our case without any further modifications,
once the local polynomial convexity is established.

Our interest in open Whitney umbrellas originates in the paper of Givental′[7],
who showed that any compact real surface S, orientable or not, admits a so-called
Lagrangian inclusion, a map F : S → C2, which is a local Lagrangian embedding
except for a finite number of singularities that are either double points or Whitney
umbrellas. It is well known (see, e.g., [2] or [11]) that certain surfaces do not admit a
Lagrangian inclusion F without umbrellas, and so open Whitney umbrellas appear
to be intricately related to the topology of the surfaces. The study of convexity
properties near Whitney umbrellas is an instrumental part in this investigation. In
particular, combining Theorem 1.1 with the results in [14] we conclude that any
Lagrangian inclusion is locally polynomially convex at every point.

2. Reduction to a dynamical system

In this section we review how the problem of local polynomial convexity near
a Whitney umbrella can be reduced to the computation of the phase portrait of
a certain dynamical system, a method that was introduced in [13]. In fact, the
procedure works without modifications for a somewhat more general type of isolated
singularities.

2.1. The characteristic foliation. Let τ : R2 → R4 ∼= C2, τ (0) = 0, be a
homeomorphism onto its image, smooth except at the origin, and such that S =
τ (R2) is a totally real surface in C2 with an isolated singular point at the origin.
Suppose S is embedded in a real hypersurface M in C2. We define a field of lines
determined at every p ∈ S \ {0} by

Lp = TpS ∩HpM,



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

OPEN WHITNEY UMBRELLAS 5321

where HpM = TpM ∩ JTpM is the complex tangent space of M at p and J is
the standard complex structure on C2. The foliation defined by the integral curves
corresponding to this field is called the characteristic foliation of S (with respect
to M).

Let us also suppose that M is defined as the zero locus of a function ρ : C2 → R,
smooth and strictly plurisubharmonic near the origin,

M = M(ρ) = {(z, w) ∈ C2 : ρ(z, w) = 0}, ∇ρ|M\{0} �= 0,

and let

Ω(ρ) = {(z, w) ∈ C2 : ρ(z, w) < 0}.
Recall that the polynomially convex hull K̂ of a compact set K ⊂ C2 is defined

as

K̂ = {z ∈ Cn : |P (z) | ≤ ‖P ‖K , for every holomorphic polynomial P}.

K is called polynomially convex if K = K̂. Its essential hull Kess is defined by

Kess = K̂ \K, and its trace Ktr by Ktr = Kess ∩K. We note that

(2.1) Kess ⊆ K̂tr.

Indeed, a local maximum principle due to Rossi [12,15] states that if K is a compact

set in Cn, E is a compact subset of K̂ and U is an open subset of Cn that contains
E, then for all f ∈ O(U), ‖f ‖E = ‖f ‖(E∩K)∪∂E , where the boundary of E is taken

with respect to K̂. Now, by choosing E = Kess and U = C2, we obtain (2.1).
Since τ is continuous, the set S = τ (R2) is connected. Let ε > 0 be such that

ρ is strictly plurisubharmonic in B(0 , ε). By a classical result (see, for example,

[8,15]), the polynomially convex hull of S ∩ B(0 , ε) agrees with its psh-hull. Hence,

the polynomial hull of the set S ∩ B(0 , ε) is contained in Ω(ρ) ∩ B(0 , ε). Let X be

the connected component of S ∩ B(0 , ε) containing the origin. Then X \ {0} is a
smooth compact real surface embedded in ∂Ω(ρ). The following key proposition is
essentially due to Duval [6] (see also Jöricke [9]).

Proposition 2.1. Xtr cannot intersect a leaf of the characteristic foliation at a
totally real point of X without crossing it.

The original proof of Duval can be easily adapted to our situation. It is an
application of Oka’s characterization of polynomially convex subsets of Cn. Oka’s
family of algebraic curves can be constructed from the leaves of the characteristic
foliation, and because Ω is strictly pseudoconvex, it suffices to ensure that the
family leaves Ω. See [13] for details.

The last step in reducing the problem to a dynamical system is provided by
the following result. Recall that a rectifiable arc is the homeomorphic image of an
interval under a Lipschitz continuous map.

Proposition 2.2. Suppose that there exist two rectifiable arcs γ1, γ2 in X such
that

(i) γ1 ∩ γ2 = {0};
(ii) γj are smooth at all points except, possibly, at the origin;
(iii) for any compact subset K ⊂ X not contained in γ1 ∪ γ2, there exists a leaf γ

of the characteristic foliation of S such that K ∩ γ �= ∅ but K does not meet
both sides of γ.
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Then, X is polynomially convex.

Proof. It follows from Proposition 2.1 that Xtr ⊆ γ1 ∪ γ2 and from (2.1) that

Xess ⊆ γ̂1 ∪ γ2. A rectifiable arc is polynomially convex [15, Corollary 3.1.2].
Moreover, by [15, Theorem 3.1.1], if Y is a compact polynomially convex subset

of Cn and Γ is a compact connected set of finite length, then (Ŷ ∪ Γ) \ (Y ∪ Γ) is
either empty or it contains a complex purely one-dimensional analytic subvariety
of the complement C2 \ (Y ∪ Γ). By taking Y and Γ to be the arcs γ1, γ2, it
can be shown by following the same rationale as in [13, Corollary 2], that the
union of the two arcs cannot bound a complex one-dimensional variety. Therefore,

γ̂1 ∪ γ2 = γ1 ∪ γ2 ⊂ X, so Xess ⊂ X. Since X̂ \X ⊆ Xess \X = ∅, it follows that
X is polynomially convex. �

Our next goal is to find a suitable hypersurface containing the open Whitney
umbrella, such that the properties of Proposition 2.2 are satisfied.

2.2. The characteristic foliation of the open Whitney umbrella. We iden-
tify R4

(x,u,y,v) with C2
(z,w) for computational purposes. If I2 is the 2 × 2 identity

matrix, we denote by

J =

(
0 −I2
I2 0

)
the matrix defining the standard complex structure on C2. Let φ : C2 → C2 be a
local symplectomorphism which, without loss of generality, is assumed to preserve
the origin. Let the Jacobian matrix of φ at 0 be

Dφ(0) =

(
A B
C D

)
,

where A,B,C,D are the 2× 2 block components given by the partial derivatives of
φ. Since φ is symplectic, we have

(2.2) AtD − CtB = I2, AtC = CtA, DtB = BtD.

Let ψ : R4 → R4 be the linear transformation given by the matrix

Ψ =

(
Dt −Bt

Bt Dt

)
.

Since ΨJ = JΨ, the map ψ is complex linear. We now show that Ψ is invertible.
From (2.2) we get

(2.3) D(ψ ◦ φ)(0) =
(
I2 0
E G

)
, E = (eij), eij ∈ C,

where

(2.4) G = (gij) = BtB +DtD.

Since Dψ(0) is symplectic, detDφ(0) = 1, and so detG = detΨ. We claim that

(2.5) detG = g11g22 − g212 > 0.

Indeed, let B = (bjk), and D = (djk). A straightforward computation gives

detG = (b11b22 − b12b21)
2 + (b11d12 − b12d11)

2 + (b11d22 − b12d21)
2

+ (b21d12 − b22d11)
2 + (b21d22 − b22d21)

2 + (d11d22 − d12d21)
2,
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which is obviously nonnegative. If detG = 0, then, for j = 1, 2, the following hold:

(bj2 = 0) ⇒ (bj1 = 0), (dj2 = 0) ⇒ (dj1 = 0).

On the other hand, if any two or more of b12, b22, d12, d22 do not equal 0, then the

corresponding ratios
b11
b12

,
b21
b22

,
d11
d12

,
d21
d22

are equal, e.g., if b12 �= 0, b22 �= 0, d12 �= 0,

and d22 �= 0, then

b11
b12

=
b21
b22

=
d11
d12

=
d21
d22

= λ ∈ R.

It is not difficult to see that all possible combinations lead to Dφ(0) either having
two identically zero columns in the vertical B|D block, or one column being a λ
multiple of another. In both scenarios detDφ(0) = 0, which is a contradiction. It
follows then, that detG > 0, which proves that Ψ is nonsingular. Furthermore,
(2.4) and (2.5) imply that g11 > 0, g22 > 0.

Now, let

Σ′ = (ψ ◦ φ)(Σ),

which by construction is a totally real surface with an isolated singular point at the
origin. We consider the following auxiliary hypersurface which contains Σ,

M=M(ρ)={(z, w) ∈ C2 : ρ(z, w) := x2−yv2+
9

4
u2−y3+C(xy− 3

2
uv) = 0}, C > 0.

A direct computation shows that for any C > 0, the gradient ∇ρ does not vanish
in some punctured neighbourhood of the origin. Now, put

M ′ = (ψ ◦ φ)(M) = M ′(ρ′), ρ′ := ρ ◦ (ψ ◦ φ)−1.

It follows that M ′ is also smooth in some punctured neighbourhood of the origin.
Clearly, ϕ(Σ) is locally polynomially convex at the origin if and only if (ψ ◦ ϕ)(Σ)
is. We next show that, for some C > 0, M ′ is strictly pseudoconvex near the origin.
Let (x′, u′, y′, v′) be the coordinates in the target space of ψ ◦ φ and let

(D(ψ ◦ φ)(0))−1 =

(
I2 0
E′ G′

)
, E′ = (e′ij), G

′ = (g′ij), eij , gij ∈ C.

The formal Taylor expansion of (ψ ◦ φ)−1 is given by

(ψ ◦ φ)−1(x′, u′, y′, v′) =

(
x′ + σ1, u′ + σ2, e′11x

′ + e′12u
′ + g′11y

′ + g′12v
′ + σ3,

e′21x
′ + e′22u

′ + g′12y
′ + g′22v

′ + σ4

)
,

where

σi =
∑

j+k+l+m≥2

hi
jklmx′ju′ky′lv′m, hi

jklm ∈ C, i ∈ {1, 2, 3, 4}.
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Then,

ρ′(x′, u′, y′, v′) = (x′ + σ1)2

− (e′11x
′+e′12u

′+g′11y
′+g′12v

′+σ3)(e′21x
′+e′22u

′+g′12y
′+g′22v

′+σ4)2

+
9

4
(u′ + σ2)2 − (e′11x

′ + e′12u
′ + g′11y

′ + g′12v
′ + σ3)3

+ C(x′ + σ1)(e′11x
′ + e′12u

′ + g′11y
′ + g′12v

′ + σ3)

− 3C

2
(u′ + σ2)(e′21x

′ + e′22u
′ + g′12y

′ + g′22v
′ + σ4).

A direct computation gives the Levi form of ρ′,

Lρ′ =

⎛⎜⎜⎝
2 + 2Ce′11 Ce′12 −

3

2
Ce′21 +

5i

2
Cg′12

Ce′12 −
3

2
Ce′21 −

5i

2
Cg′12

9

2
− 3Ce′22

⎞⎟⎟⎠ .

From this it is clear that for C sufficiently small the Levi form is strictly positive-
definite. This implies that ρ′ is strictly plurisubharmonic near the origin, hence M ′

is strictly pseudoconvex in some punctured neighbourhood of the origin. Note that
the constant C depends on the symplectomorphism φ.

We will show that S = Σ′ and M = M ′(ρ′) satisfy the conditions of Proposition
2.2. For this, in Section 3, we compute the the dynamical system describing the
characteristic foliation of Σ′, and in Section 4 we describe the method of reduction
to the principal part of a vector field due to Brunella and Miari [3]. We use this in
Section 5 to determine the phase portrait of the characteristic foliation.

3. Calculation of the system

In this section we compute the relevant low order terms of the pullback to the
parameterizing plane R2

(t,s) of the dynamic system that determines the character-

istic foliation of Σ′. We introduce the following notation for the components of the
gradient of ρ′:

∇ρ′ = (Rx(t, s), Ru(t, s), Ry(t, s), Rv(t, s)) ,

and we also set

σi
x =

∂σi

∂x′ , σi
u =

∂σi

∂u′ , σi
y =

∂σi

∂y′
, σi

v =
∂σi

∂v′
, i ∈ {1, 2, 3, 4}.

A straightforward computation gives the Jacobian matrix of (ψ◦φ)−1 at the origin,

D(ψ ◦ φ)−1(0) =

(
I2 0
E′ G′

)
=

⎛⎝ I2 0

−G−1E G−1

⎞⎠ .(3.1)

The characteristic foliation of Σ′ is determined at every p ∈ Σ′ \ {0} by

LpΣ
′ = TpΣ

′ ∩HpM
′, HpM

′ = TpM
′ ∩ J(TpM

′).

It follows that
〈JXp,∇ρ′〉 = 0, for all Xp ∈ LpΣ

′, p ∈ Σ′.

We thus obtain a smooth vector field X ∈ TΣ′, given by

(3.2) X = α
∂f

∂t
+ β

∂f

∂s
,
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where f : R2 → R4 is defined as

f = ψ ◦ φ ◦ π,

and α, β are smooth functions on R2, satisfying Xp=f(t,s) ∈ Lp=f(t,s)Σ
′, for p �= 0.

Consequently, we can choose

(3.3) α(t, s) = 〈J ∂f

∂s
,∇ρ′〉, β(t, s) = −〈J ∂f

∂t
,∇ρ′〉.

We conclude that the characteristic foliation of Σ′ is defined by the following system
of ODEs:

(3.4)

{
ṫ = α(t, s),

ṡ = β(t, s).

Writing

f(t, s) = (f1(t, s), f2(t, s), f3(t, s), f4(t, s)),

and using (2.3) and (1.1), we can express each fi as a formal power series in (t, s):

f1(t, s) = ts+ f1
02s

2 + f1
12ts

2 + f1
21t

2s+ f1
03s

3 +
∑

j+k≥4

f1
jkt

jsk,

f2(t, s) =
2

3
t3 + f2

02s
2 + f2

12ts
2 + f21t

2s+ f03s
3 +

∑
j+k≥4

f2
jkt

jsk,

f3(t, s) = g12s+g11t
2+e11ts+f3

02s
2+

2e12
3

t3+f3
12ts

2+f3
21t

2s+f3
03s

3+
∑

j+k≥4

f3
jkt

jsk,

f4(t, s) = g22s+g12t
2+e21ts+f4

02s
2+

2e22
3

t3+f4
12ts

2+f4
21t

2s+f4
03s

3+
∑

j+k≥4

f4
jkt

jsk,

(3.5)

From the above identities, putting Xt =
∂f

∂t
, Xs =

∂f

∂s
, we get

(3.6) Xt =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

s+ 2f1
21ts+ f1

12s
2

2t2 + 2f2
21ts+ f2

12s
2

2g11t+ e11s+ 2e12t
2 + 2f3

21ts+ f3
12s

2

2g12t+ e21s+ 2e22t
2 + 2f4

21ts+ f4
12s

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ o(|(t, s) |2),

and

(3.7) Xs =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

t+ 2f1
02s+ f1

21t
2 + 2f1

12ts+ 3f1
03s

2

2f2
02s+ f2

21t
2 + 2f2

12ts+ 3f2
03s

2

g12 + e11t+ 2f3
02s+ f3

21t
2 + 2f3

12ts+ 3f3
03s

2

g22 + e21t+ 2f4
02s+ f4

21t
2 + 2f4

12ts+ 3f4
03s

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ o(|(t, s) |2).
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It follows from (3.3) that

α(t, s) = −(Xs)3Rx − (Xs)4Ru + (Xs)1Ry + (Xs)2Rv =
∑
j,k≥0

αjkt
jsk,

β(t, s) = (Xt)3Rx + (Xt)4Ru − (Xt)1Ry − (Xt)2Rv =
∑
j,k≥0

βjkt
jsk,

(3.8)

where (Xt)i, (Xs)i, i = 1, . . . , 4, are the components of Xt, Xs, respectively. By a
direct inspection using (3.5), (3.6), (3.7) and (3.8), we find that the terms up to
order 3 in the power expansion of α(t, s) are given by

α01s = C

(
−g′11g

2
12 +

1

2
g′12g12g22 +

3

2
g′22g

2
22

)
s,

α20t
2 = C

(
−g′11g11g12 − g′12g

2
12 +

3

2
g′12g11g22 +

3

2
g′22g12g22

)
t2,

and those of β(t, s) by

β11ts = 2C

(
g′11g11g12 + g′12g11g22 −

3

2
g′12g

2
12 −

3

2
g′22g22g12

)
ts,

β30t
3 = 2C

(
g′11g

2
11 −

1

2
g′12g12g11 −

3

2
g′22g

2
12

)
t3.

Replacing the primed coefficients with their expressions from (3.1) we obtain

(3.9) α01 = (3C/2)g22, α20 = −Cg12, β11 = −3Cg12, β30 = 2Cg11.

Since g11, g22 are positive, it follows that

(3.10) α01 > 0 and β30 > 0,

and, for g12 �= 0,

(3.11) g12α20 < 0 and g12β11 < 0.

Combining all of the above, the dynamical system (3.4) defining the characteristic
foliation of Σ′ becomes

(3.12)

{
ṫ = α(t, s) = 3C

2 g22s− Cg12t
2 + o(|t |2 + |s |),

ṡ = β(t, s) = −3Cg12ts+ 2Cg11t
3 + o(|t |3 + |ts |).

4. Reduction to the principal part

To prove that the system (3.12) defines a characteristic foliation satisfying the
conditions of Proposition 2.2, we need to determine the topological structure of
the vector field X in (3.2). Although the linear part of X does not vanish, its
eigenvalues do vanish, making the origin a nonelementary isolated singularity of
X. Therefore, we cannot apply standard results, such as the Hartman-Grobman
theorem. Instead, we will make use of a result by Brunella and Miari [3] which,
under certain conditions, reduces the problem to determining the topological class
of a truncated vector field.

Let X be a C∞-smooth vector field on R2
(x1,x2)

, with an isolated nonelementary

singularity at the origin. Its power series expansion at 0 can be written as
(4.1)

X (x)=
∑
j=1,2

∑
Q

fjQ xQxj
∂

∂xj
, where Q=(q1, q2) ∈ Z2, qj ≥ −1, and xQ=xq1

1 xq2
2 .
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We also assume that f1(i,−1) = f2(−1,i) = 0 for all i ∈ N ∪ {−1} (here N =

{0, 1, 2, . . . }). We call the subset of R2 defined by

D = {Q+ (1, 1) : Q ∈ Z2, |f1Q |+ |f2Q | �= 0}
the support of the vector field X . The Newton polygon of X is defined as the convex
hull Γ of the set ⋃

Q∈D

{Q+ P : P ∈ R2
+},

where R+ = [0,+∞). It coincides with the intersection of all support half spaces

of D (see [4]). The boundary of Γ consists of edges, which we denote by Γ
(1)
j , and

vertices, which we denote by Γ
(0)
j , where j is some enumeration and the upper index

denotes the dimension of the object. The union of the compact edges of Γ, which
we denote by Γ̂, is called the Newton diagram of X .

Definition 4.1. Let X be given as in (4.1).

(i) The vector field

XΔ(x) =
∑
j=1,2

∑
Q∈Γ̂

fjQ xQxj
∂

∂xj

is called the principal part of X .

(ii) Let Γ
(1)
1 , . . . ,Γ

(1)
N , N > 0, be all the (compact) edges in the Newton diagram.

The vector field

Xk(x) =
∑
j=1,2

∑
Q∈Γ

(1)
k

fQ xQxj
∂

∂xj

is called the quasi-homogeneous component of the principal part XΔ(x) rela-

tive to Γ
(1)
k , for k = 1, . . . , N .

Definition 4.2. Let X1, X2 be two planar vector fields defined on the open subsets
Ω1 and Ω2 of R2, respectively. We say that X1 is topologically equivalent to X2 if
there exists a homeomorphism h : Ω1 → Ω2 sending orbits of X1 to orbits of X2.
More precisely, if γ1 is the orbit of X1 passing through p ∈ Ω1, then h(γ1) is the
orbit of X2 passing through h(p). In this case we say that X1 and X2 belong to the
same topological class of vector fields.

In general, if a C∞-smooth planar vector field does not have characteristic orbits
(i.e., orbits approaching the singular point in positive or negative time with a well-
defined slope limit), then an isolated singularity is either a centre or a focus, or
briefly, a centre-focus. Following the terminology introduced in [3], we say that
two vector fields on R2, X1 and X2, X1(0) = X2(0) = 0, are locally topologically
equivalent modulo centre-focus if either one of the following cases apply:

(i) X1 and X2 have characteristic orbits and are topologically equivalent near the
origin, or

(ii) X1 and X2 are both centre-foci.

Following Brunella and Miari, we say that a C∞-smooth planar vector field X ,
X (0) = 0, has a nondegenerate principal part XΔ, if none of its quasi-homogeneous
components has singularities on (R \ {0})2. The main result of Brunella and Miari
is the following.
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Let X be a C∞-smooth vector field on R2, X (0) = 0, with nondegenerate prin-
cipal part XΔ, such that 0 is an isolated singularity of XΔ. Then X is locally
topologically equivalent to XΔ modulo centre-focus.

Figure 1. The Newton diagram for (3.12).

For the system (3.12), the Newton diagram consists of the two vertices Γ
(0)
1 =

(0, 2), Γ
(0)
2 = (4, 0) and the edge Γ

(1)
1 connecting them; see Figure 1. The principal

part of X is given by

(4.2) XΔ(t, s) =
(
α01s+ α20t

2
) ∂

∂t
+
(
β11ts+ β30t

3
) ∂

∂s
.

Notice that XΔ also counts for the terms corresponding to the vertex Γ
(0)
3 = (2, 1) ∈

Γ
(1)
1 . Clearly, XΔ has only one quasi-homogeneous component, that is, XΔ itself.

We claim that XΔ is nondegenerate. Indeed, a singular point (t, s) of XΔ would
satisfy the system

(4.3)

{
α01s+ α20t

2 = 0,

β11ts+ β30t
3 = 0.

Note that, if t = 0, the only solution of (4.3) is the origin, hence we can assume
t �= 0. Thus, we obtain a linear system in s and t2, that has nonzero solutions if
and only if α01β30 = α20β11. However, this is impossible, since, by (3.9) and (2.5),
we have

(4.4) α01β30 − α20β11 = 3C2g11g22 − 3C2g212 = 3C2(g11g22 − g212) > 0.

This proves that XΔ is nondegenerate, with one isolated singularity at the origin.
Thus, by Brunella and Miari it suffices to compute the phase portrait of XΔ.

5. Final step: The phase portrait

Recall that the principal part of the vector field defined by (3.12) is given by
(4.2), and the corresponding ODE system is

(5.1)

{
ṫ = α01s+ α20t

2 = t(α01t
−1s+ α20t),

ṡ = β11ts+ β30t
3 = s(β11t+ β30t

3s−1).

We determine the phase portrait of XΔ near the origin using Bruno’s theory of

normal forms [4]. For each element Γ
(d)
j of the Newton diagram associated with

(5.1), there is a corresponding sector Ud
j in the phase space R2

(t,s), so that together
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they form a full neighbourhood of the origin (here boundaries of the sectors are not
necessarily integral curves). In each Ud

j one brings the system to a normal form
by using power transformations (quasi-homogeneous blow-ups) which reduces the
problem to the study of elementary singularities of the transformed system. This
allows one to determine the behaviour of the orbits in each sector. After that the
results in each sector are glued together to obtain the overall phase portrait of the
system near the origin. In what follows we apply Bruno’s method to our specific
case, referring the reader to [4] or [13, Section 5] for more details on the general
method.

We remark that in Bruno’s version, the Newton polygon differs from that defined
in Section 4 by a translation of (−1,−1), and so the Newton diagram of XΔ now

consists in two vertices, Γ
(0)
1 = (−1, 1), Γ

(0)
2 = (3,−1), and one edge Γ(1) connecting

Γ
(0)
1 and Γ

(0)
2 . By Bruno’s classification [4, p. 138], the vertices are of Type I, so

the integral curves in the sectors

U (0)
1 (ε) = {(t, s) ∈ R2 : (|t | , |s |)(1,0) ≤ ε, (|t | , |s |)(−2,1) ≤ ε},

U (0)
2 (ε) = {(t, s) ∈ R2 : (|t | , |s |)(0,1) ≤ ε, (|t | , |s |)(2,−1) ≤ ε},

are vertical and horizontal, respectively, in particular, they do not approach the
origin.

Next, we analyze the behaviour of the orbits in the sector

U (1)(ε) = {{(t, s) ∈ R2 : ε ≤ (|t | , |s |)(−2,1) ≤ 1

ε
, |t | , |s | ≤ ε}

corresponding to the edge Γ(1), whose unit directional vector is R = (−2, 1).
Following Bruno’s method, the vector R leads to the coordinate transformation
y1 = t, y2 = t−2s. After the change of time parameter dτ1 = y1dτ , we obtain the
equivalent system

(5.2)

{
ẏ1 = y1 (α20 + α01y2) ,

ẏ2 = y2
[
β30y

−1
2 + (β11 − 2α20)− 2α01y2

]
.

We are interested in the singular points along the y2-axis, i.e., the solutions of the
quadratic equation

(5.3) −2α01y
2
2 + (β11 − 2α20)y2 + β30 = 0,

whose discriminant is

D = (β11 − 2α20)
2 + 8α01β30.

By (3.10), D is positive, hence (5.3) has two distinct real roots

(5.4) y± =
β11 − 2α20 ±

√
(β11 − 2α20)2 + 8α01β30

4α01
.

We need to analyze the dynamics near each point (0, y±), and to do so, we translate
y± to the origin via the following change of coordinates:

z1 = y1, z2 = y2 − y±.

As a result, the system (5.2) becomes{
ż1 = z1 [(α20 + α01y

±) + α01z2] ,

ż2 = z2
[
(β30+β11y

± − 2α20y
±−2α01(y

±)2)z−1
2 +(β11−2α20−4α01y

±)−2α01z2
]
.
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This is a system whose linear part does not vanish, and its eigenvalues are given by

(5.5) λ±
1 = α20 + α01y

±, λ±
2 = β11 − 2α20 − 4α01y

±.

Lemma 5.1. In the above setting, the following inequalities hold:

λ+
1 > 0, λ−

1 < 0, λ+
2 < 0, λ−

2 > 0.

Proof. Suppose first that g12 = 0. Then (3.9) implies that α20 = β11 = 0, hence

y± = ±
√

β30

2α01
. The corresponding eigenvalues become

λ±
1 = ±α01

√
β30

2α01
, λ±

2 = ∓4α01

√
β30

2α01
,

and by (3.10), none of them can equal zero. This proves the lemma in the case
g12 = 0 so, for the rest of the proof, we assume g12 �= 0.

We next observe that, by substituting (5.4) in (5.5), we obtain

λ±
2 = ∓

√
(β11 − 2α20)2 + 8α01β30,

which, by (3.10), cannot be zero, hence the last two inequalities of the lemma follow.
Suppose now that

λ+
1 = α20 + α01y

+ ≤ 0.

Then, by substituting the expression (5.4) for y+, we get

(5.6) β11 + 2α20 +
√
(β11 − 2α20)2 + 8α01β30 ≤ 0.

By (3.11), if g12 < 0, then β11 + 2α20 > 0, hence (5.6) cannot be true. If g12 > 0,
then β11 + 2α20 < 0, so (5.6) leads to

(β11 − 2α20)
2 + 8α01β30 < (β11 + 2α20)

2,

which, after simplifications, becomes

α01β30 − α20β11 < 0,

hence contradicting (4.4). Thus, in both cases, we conclude that λ+
1 > 0.

Substituting y− in the first equation of (5.5) with its expression (5.4), we get

(5.7) λ−
1 =

1

4

(
2α20 + β11 −

√
(β11 − 2α20)2 + 8α01β30

)
.

If g12 > 0, then 2α20 + β11 < 0, hence by (5.7), λ−
1 < 0. If g12 < 0, then

2α20 + β11 > 0. In this case, suppose λ−
1 ≥ 0. By (5.7), it follows that

2α20 + β11 ≥
√
(β11 − 2α20)2 + 8α01β30,

and since 2α20 + β11 > 0,

(2α20 + β11)
2 ≥ (β11 − 2α20)

2 + 8α01β30,

which leads to

8(α01β30 − α20β11) ≤ 0.

Again, this contradicts (4.4), and it follows that λ−
1 < 0, which proves the lemma.

�
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By Lemma 5.1, for both y+ and y−, the corresponding eigenvalues are of opposite
signs, hence the phase portrait of system (5.2) is a saddle at the origin. It follows
that, in (y1, y2)-coordinates, the y2-axis and the lines {y2 = y+}, {y2 = y−} are
integral curves. Let L1 = {(y1, y+) : y1 > 0}, L2 = {(y1, y+) : y1 < 0}, L3 =
{(y1, y−) : y1 > 0}, L4 = {(y1, y−) : y1 < 0}, L5 = {(0, y2) : y2 > y+},
L6 = {(0, y2) : y2 < y−} and I = {(0, y2) : min{y−, y+} < y2 < max{y−, y+}}.
In the strip {(y1, y2) : y1 ∈ R,min{y−, y+} < y2 < max{y−, y+}} of R2

(y1,y2)
, the

integral curves are asymptotic to L1 and L3 or to L2 and L4, and do not touch I.
The rest of the orbits are asymptotic to L2, L5 or to L5, L1 or to L6, L4 or, finally,
to L6 and L3. This means that in the original system there are two integral curves
s = y±t4 entering the origin while the other integral curves are in the complement
of these two curves. Lastly, we observe that for a sufficiently small ε > 0, the
curves s = y±t2 enter U (1)(ε), which completes the analysis for the edge Γ(1) of the
Newton diagram.

Gluing the orbits in all three sectors corresponding to (Γ
(0)
1 , Γ

(0)
2 , Γ(1)), we see

that the phase portrait near the origin of the system (3.12) is a saddle. By letting
γ1 and γ2 be the curves s = y±t2, we conclude that any small enough compact K
which is not contained in γ1 ∪ γ2 will meet one of the orbits of the characteristic
foliation at exactly one point, which shows that the conditions of Proposition 2.2
are met. This completes the proof.
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