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Abstract: Willuhn et al., observed that habitual cocaine use was correlated with reductions 
in D2/D3 receptors linked to decreased cue activation in occipital cortex and cerebellum. 
Dopamine agonist therapy maintains dopamine function and is relapse prevention tactic 
focused on psychoactive drug and behavioral addictions. Medication Assisted Treatment 
(MAT) with emphasis on glutaminergic medications fails in the long-term treatment of 
Reward Deficiency Syndrome Behaviors (RDS). While the careful use of “dopamine 
antagonist-therapy” short-term is supported, the research-based concept of “dopamine 
agonist therapy” in long-term is proposed. Neurogenetics and epigenetics are important in 
understanding treatment response and clinical outcomes. The neuro–mechanisms involving 
“dopamine homeostasis” are key to understanding recovery from drug and non–drug addic-
tive behaviors. For example, patients who carry the DRD2 A1 allele (30-40 less D2 
receptors) should consider Neuronutriant–Amino-Acid therapy (KB220 variants) a 
prevention modality. DRD2 A1 allele carriers show amplified striatal function of L-amino acid decarboxylase, 
prior to dopamine biosynthesis. Another example is the effect of Acute Tyrosine Phenylalanine Depletion 
(ATPD) on decision-making and reward found carriers with amino-acid deficiency (ATPD). They experienced 
attenuated reward and reduced decision-making ability as quantified by Iowa Gambling Task (IGT). Future re-
search should be directed at asking the question; Would “dopamine agonist therapy” using KB220 variants reduce 
methylation and increase acetyl groups to enhance DRD2 expression especially in DRD2 A1 allele carriers and 
lead to increased dopamine function and a reduction of drug and non-drug seeking behaviors?  

Keywords: Dopamine homeostasis, dopamine resistance, neuronutrient–amino-acid therapy, neurogenetics, epigenetics, enkephalinase inhi-
bition, KB220 variants. 

1. INTRODUCTION 
 Reward Deficiency Syndrome (RDS) was a term first used in 
1996 to describe a group of behaviors that result from the lack of 
adequate pleasure or satisfaction in life. Genetic researchers have 
identified the lack of wellbeing as being associated with a 
dopamine deficiency. The RDS behaviors are all addictive obses-
sive and impulsive behaviors. including both substance and non -
substance (process) addictions [1]. Dopamine must be regulated to 
reduce aberrant craving and drug seeking. The genetic variations 
and epigenetic changes to DNA function in the reward circuitry 
result in diminished dopaminergic activity. This decreased 
dopamine function sets up the brain to be more sensitive to stress 
especially in the older individuals. In terms of therapeutic targets, 
we are cognizant that each genetic polymorphism will affect the 
function of the brain reward circuitry and will need to be identified 
across the CNS. There are numerous genes implicated in this orga-
nization, but it is known that the normal function of this important 
reward system works as a cascade known as the “Brain Reward 
Cascade” [2]. One goal in the treatment of drug and or behavioral  
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addictions is to induce stabilization of dopaminergic function or 
“dopamine homeostasis.”  
 While somewhat controversial regarding dopamine surfeit or 
deficit [3] dopamine homeostasis is a laudable treatment goal. The 
proposed goal in long–term treatment is to enhance dopamine re-
lease by employing mechanisms tied to GABA regulation, and 
inhibition of enkephalinase. This enhanced dopamine release will 
induce anti-stress states and diminish stress induced addictive be-
haviors. In a literature review, we intend to show that by utilizing 
compounds that either control GABA transmission or inhibit 
GABA transmission, higher amounts of dopamine will be released 
at the nucleus accumbens (NAc). Numerous compounds have been 
shown to stimulate glutaminergic sites through N-methyl-D-
aspartate (MDMA) receptors. However, this is the first anti-craving 
compound developed to enhance this mechanism for long-term 
treatment and relapse prevention. We also now know that epige-
netic effects can alter DNA expression both through histone methy-
lation or de-acetylation. We ask the question: Is it possible that 
brain reward circuitry is set up preferentially to synthesize more 
dopamine when challenged with a “Neuronutrient Amino-Acid” 
formula?   
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1.1. Genes and Life Style 
 During 2013 the National Survey on Drug Use and Health 
found that 24.6 million Americans (ages >12 years) used illicit 
drugs within the last month, and 21.6 millón were classified as hav-
ing a substance use disorder (SUD). The same survey approximated 
that of 6.9 million illicit drug users, 4.2 million of them had mari-
juana, 1.9 million had pain reliever, 855,000 had cocaine, and 
517,000 had heroin use disorders. In 2014, almost six percent of 
college students was smoking marijuana on a daily or near-daily 
basis, defined as smoking marijuana 20 or more times in the 
previous 30 days [4]. These numbers confirm that the significant 
threat SUDs poses to overall public health and requires our urgent 
attention 
 The Food and Drug Administration (FDA) has approved several 
medications for alcohol, nicotine, and opiate dependence treatment. 
Nonetheless, these medications do not deliver the best form of ther-
apy. Presently, the FDA has not approved any medications for the 
treatment of substance use disorders of cocaine, methamphetamine, 
or cannabis. There is an imperative for the development of safe and 
effective treatment for these drugs of choice. 
 Before we delve into an attempt to provide neuroscience evi-
dence for revolutionary changes in Medication Assisted Treatment 
(MAT), it seems necessary to report some new thinking. Ideas re-
lated to our genome that impact not only addiction liability but also 
other pressing issues.  
 The hypothesis is that in the treatment of any individual for 
addictive behaviors (drug and non-drug) ones’ genetic makeup may 
have relevant predictive value in lifestyle choices like the ability to 
accept a higher power (spirituality) and even their political views. 
Consideration of these qualities may sound like a diversion from 
the matter at hand, but they are indeed part of the holistic under-
standing of any individual.  
 Novel evolutionary concepts linked to a developing scientific 
application known as omics, in this case, the genome, we are sug-
gesting that spiritual, social, and political behaviors may be 
associated with inheritable reward gene polymorphisms, as revealed 
in addiction. Blum et al., [5] and Boardman et al., [6] have pro-
posed that gene polymorphisms analyses may potentially aid in 
expecting liberalism or conservatism in partisan connections and 
friendships. For example, both alcoholism and obesity occur in 
large social networks, and are induced by friends to partake, have 
similar genotypes, specifically the DRD2 A1 allele. Similarly, 
voting and connection to specific political groups are differentially 
correlated to numerous reward genes including 5HTT, MOA, 
DRD2, and DRD4, potentially forecasting liberalism or conserva-
tism. Certainly, even in politics, “birds of a feather flock together” 
(homophily). While the above correlates to not only social views, 
but group participation,  the genes related to happiness or anti-stress 
include, but are not limited to, these reward gene polymorphisms.   

1.2. Neuroscience-Based Treatment Modalities  
 In the 5th Edition of the Diagnostic and Statistical Manual of 
Mental Disorders, Substance addiction is defined by a combination 
of symptoms such as tolerance, and withdrawal, further substance 
intake for relieving withdrawal, amplified ingestion past initial 
intention to use, and failure to decrease consumption. For example, 
spending a substantial amount of time acquiring drugs or 
recuperating from drug effects. Negligence of other areas of life 
like family, and the continuance of consumption, despite dealing 
with adverse results.  
 The NAc continúes to be implicated in addiction. Within the 
NAc circuitry neurotransmitters have been associated with compul-
sive drug use and relapse. The glutamate system, in particular, has 
been associated with relapse after abstinence. Poor dopamine sys-
tem function has been associated with compulsive drug consump-
tion. The glutamate homeostasis hypothesis involves the influence 

of the relationship between synaptic and extrasynaptic levels of 
glutamate, on the prefrontal cortex (PFC) to NAc pathways [7].  
 Following recurring drug consumption, deregulation of this 
homeostasis escalates glutamate discharge from the PFC to the NAc 
during relapse. Glial cells also contribute to this hypothesis. Glial 
cells form the connections between the NAc and the PFC by modi-
fying glutamate levels in synaptic and extrasynaptic spaces. Co-
caine self-use and withdrawal, on the contrary, grows glutamate 
receptor 1 (GluA1) of alpha-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) the surface manifestation of 
subunit receptors at the NAc. Additionally, cocaine self-use and 
withdrawal induce the creation, also at the NAc, of subunit 
glutamate receptor 2 (GluA2), deficient in Ca2+-permeable AMPA 
receptors (CP-AMPARs). Antagonism of the CP-AMPARs de-
creases cravings. It is imperative to investigate further the AMPA 
receptor subunit arrangement and differences at the NAc for an 
increased understanding of glutamatergic plastic alterations [8]. 
NAc activity can be stimulated by other factors apart from gluta-
mate and dopamine, such as brain-derived neurotrophic factor 
(BDNF), can and stimulate variations in dendritic spine density. 
BDNF also stimulates drug behaviors including self-administration 
and relapse [9].   

1.3. Epigenetics and Addiction  
 The addition of a methyl group (CH3) to another molecule (like 
an enzyme, RNA, chromosome/DNA, toxin, or protein) is 
Methylation. The inclusion or reduction of a methyl group causes 
great alterations as they can either activate or deactivate DNA. 
Aging is marked by the gradual loss of cytosine methylation in the 
genome. Methylated cytosines (5mC) inhibit gene transcription and 
DNA cleavage by restriction enzymes. Apoptosis which requires 
DNA fragmentation is prevented by cleavage inhibition. Principal 
mechanisms are antioxidants catalyze the re-methylation of 
cytosine by altering the activity of DNA methyltransferases while 
free radicals catalyze the demethylation of 5mC. Methylation and 
or deacetylation are necessary methods to ensure constant repair 
work to DNA. For example, methylation is also essential for con-
verting homocysteine into the good, mood-elevating methionine, 
glutathione, and SAMe molecules. Proper methylation is required 
for the following processes: reducing homocysteine; protecting 
telomeres to slow down the aging process; preventing hormone 
imbalances; creating SAMe, the precursor to serotonin and 
dopamine. Methylation is also the processes by which serotonin is 
converted to melatonin for sleep; helping the thyroid to make 
thyroxine, and turning the stress response on and off. Detoxification 
of dangerous chemicals and heavy metals, supporting the liver’s 
detox process, turning genes on and off, and neurotransmission 
facilitation are all accomplished via Methylation. Cycling the 
heart’s ATP; making glutathione to detox cells; correcting chronic 
fatigue, correcting fibromyalgia, building the immune system; 
assimilating vitamin B12, managing blood pressure, as well as 
optimizing male sexual performance are all methylation processes. 
They also support nerve transmission; protecting myelin, support 
neuroendocrine balance, heal, muscle trauma; support bone, make 
insulin and protect the mitochondrial production of ATP. It is 
known that less than optimal methylation may inhibit the ability of 
the body to create the building blocks (purines and pyrimidines) 
that are needed for new DNA and RNA synthesis as well as keep-
ing telomeres long instead of short. Intermediates of methylation 
pathways are known to decrease with age and decline in methyla-
tion pathway function. DNA methylation decreases with age. On 
the other hand, Methylation can also affect reward genes with con-
comitant drug seeking behaviors especially psychostimulants [10].  
 Drug and or behavioral addictions are progressive, debilitating 
mental illness characterized by uncontrollable and compulsive sub-
stance and non-substance seeking behavior despite the mental and 
physical consequences associated with being addicted [11]. Cer-
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tainly, chronic exposure to drugs of abuse can alter gene expression 
in crucial brain reward regions. The ventral tegmental area (VTA), 
NAc, and PFC are all involved [12].  Stimulants can influence epi-
genetic processes by increasing overall histone H3 and H4 acetyla-
tion in the NAc following both acute and chronic cocaine admini-
stration [13].   
 The BDNF gene polymorphism (Val68 to Met) has recently 
been implicated in alcoholism [14], as well as other addictions. 
Graham et al., [15] reported that acute self- administration of co-
caine increases BDNF protein in the NAc. Moreover, infusions of 
BDNF into the VTA [16] induce an increase in cocaine self-
administration in rats, indicating that BDNF can facilitate reward-
related behaviors as seen in behavioral/drug addictions. Further-
more, Grimm et al. [17] found that post cocaine exposure; there is a 
persistent release of BDNF in the VTA and NAc. Others have also 
shown a similar response in the striatum [18] during withdrawal.  
 Kumar et al. [19] found that histone alterations contribute to 
cocaine’s influence on BDNF in an addictive animal model. 
Chronic cocaine exposure stimulated acetylation of histone H3 at 
the BDNF gene promoter region in the striatum; This effect 
continued after the last cocaine injection for 24 hours indicating the 
function of epigenetic mechanisms on cocaine’s BDNF regulation. 
 Acute injection of cocaine enhances manifestation of the instan-
taneous initial genes c-fos and fosB in the NAc by promoting his-
tone H4 acetylation on their corresponding proximal promoter sites 
[19-21] the mechanism through which this induction of fosB occurs 
was shown to be via the histone acetyltransferase CREB-binding 
protein (CBP). During the severe use of cocaine, it was 
demonstrated that CBP is enlisted to the fosB promoter space and 
acetylates histone H4 causing an overall rise in fosB expression [22] 
in the NAc.  
 Histone deacetylases (HDAC) enzymes are vital in modifying 
gene activity by inducing repressive influence on transcription 
modifications of the chromatin structure. It is known that there are 
11 mammalian HDAC enzymes classified into four distinct HDAC 
families; class I, IIa, IIb, and IV, grouped according to sequence 
homology, subcellular localization, and expression patterns [23]. 
Moreover, it was shown that the loss of the class II HDAC, 
HDAC5, results in an enhanced response to cocaine reward post 
conditioned place preference (CPP), and this effect was specific to 
HDAC5 with no changes observed in HDAC9 knockout mice [13, 
24]. The effect of cocaine within the NAc involved partial rescue 
HDAC5 including acetylation of target genes including the NK1 
receptor, Gnb4, Suv39H1, and RapGEF6, within the NAc. 
 Also, Romieu et al. [25] and Sun et al. [26], show that HDAC 
inhibitors can regulate cocaine-induced addiction behaviors in ro-
dents. In fact, the pan-HDAC inhibitor, sodium butyrate, can help 
regulate cocaine’s effects and this inhibitor has been shown to pro-
vide therapeutic effects in neurodegenerative disease [27]. Kumar et 
al. [19] previously demonstrated a synergistic effect of the co-
administration of sodium butyrate and cocaine. Co-administration, 
lead to increased cFos expression and increased histone H3 
acetylation at the cFos promoter. While further work is necessary 
we are beginning to understand the importance of epigenetic effects 
especially those that relate to I HDAC inhibitors like N-(2-
aminophenyl)-4-[N-(pyridin-3-yl-methoxycarbonyl) aminomethyl] 
benzamide (MS-275) [28].    
 The bottom line is that prolonged use of drugs of abuse and 
possibly behaviors like pathological gambling, hypersexuality may 
lead to long-term changes in brain function suggesting that altera-
tions in gene activity and amino acid deficiency may contribute to 
the phenotypes seen in addicted individuals [29-36]. 
 There are now a plethora of studies in both humans and animals 
suggesting the importance of transcription and downstream targets 
in the effects of drugs of abuse and possibly process addictions. 
Certainly, the role of epigenetics in the maintenance of seeking 

behavior, in the same generation and potentially even in second and 
even third generations, has been agreed upon by most informed 
neuroscientists. However, this information has not as yet translated 
to medication-assisted treatment especially during recovery. More 
work is required to describe fully how long-term aspects of 
addiction following drug exposure are mediated by epigenetic 
changes to specific downstream targets. 

2. ARE WE MEETING TREATMENT EXPECTATIONS? 
FAILED RESPONSE  

2.1. Glutaminergic Medication  
 Many of MAT FDA approved drugs favor glutaminergic tar-
gets. Moreover, they require review to elucidate shared neuro-
chemical mechanisms and their promise as anti-craving agents. 
There are a number of studies of known medications that have 
effects on the glutaminergic system such as N-acetyl-L-cysteine 
(NAC) and Modafinil that potentially have anti-craving properties. 
There are also some short-term controlled clinical studies that have 
highlighted anti- glutamatergic (Acamprosate, topiramate) and 
GABAergic (Vigabatrin) agents, and agonist replacement therapy 
(sustained-release methylphenidate, d-amphetamine) for substance 
abuse. It is important to consider mental disorder co-occurrence of 
many addictions and the potential of common mechanisms of 
craving and impulsivity [37]. The most promising treatment is a 
combination of pharmacotherapies with behavioral therapies. 

2.2. N-acetyl-L-cysteine (NAC)  
 Bauza et al. [38] have investigated the effects of a cysteine-
glutamate transporter enhancer on the neurochemistry and behavior 
in nonhuman primates addicted to cocaine and amphetamine. The 
hypothesis was that NAC, a cysteine prodrug, would augment 
extrasynaptic glutamate release, diminishing stimulant 
(amphetamine or cocaine) prompted surges in extracellular 
dopamine and related behavioral stimulation. However, unlike the 
results, of rodents studies and human clinical trials [39,40]; self-
administration and the behavioral stimulant effects of cocaine or 
amphetamine on non-human primates were not attenuated by NAC 
although dopamine surges were diminished in cocaine but not 
amphetamine.  
 Although all clinical studies are preliminary and utilized 
relatively small sample sizes, the somewhat stable anti-addictive 
properties of NAC, mostly in cocaine, postulate convincing proof 
that this medication, [39, 40], combined with other agents that 
reestablish glutamate homeostasis could provide pharmacothera-
peutic support in the management of RDS.   

2.3. Modafinil  
 The psychostimulant drug modafinil acts by exciting α-
adrenoceptors, subduing GABA discharge, hindering the dopamine 
transporter, or motivating hypothalamic orexin-containing neurons 
[41, 42]. Although a majority of studies propose that dopamine has 
stimulant properties [43-45], Modafinil has been observed increas-
ing extracellular levels of glutamate in several brain areas involving 
the dorsal striatum, hippocampus and diencephalon [46-48] without 
changing glutamate synthesis [49]. 
 Based on pro-dopaminergic activation by Modafinil and its low 
addiction liability, its use as an anti-abuse liability drug has been 
investigated but has shown mixed results. There are some examples 
of how Modafinil impedes the function of dopamine and as such, 
leads to anti-reward effects. Bodenmann et al. [50] reported that 
Modafinil could maintain the high functional activity of COMT 
Va/Val genotype, thereby leading to reduced dopaminergic signal-
ing [50]. Reduced dopaminergic signaling, is caused by the well-
known proficiency of COMT enzyme (Val/Val) that disintegrates 
dopamine rapidly, causing there to be little dopamine in the 
synapse, while interestingly, the less efficient COMT enzyme 
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(Met/Met) keeps dopamine in the synapse for much longer [51]. 
Modafinil was also shown to up-regulate the expression of the do-
pamine transporter gene once again inducing a hypodopaminergic 
trait/state in the human synapse [52]. 

2.4. Acamprosate  
 The FDA approved drug Acamprosate (calciumacetyl-
homotaurinate) is derived from homotaurine, a nonspecific γ-
aminobutyric acid (GABA) agonist. The drug is poorly absorbed 
(i.e., <20%) and requires doses in the range 2–3 grams per day to 
demonstrate efficacy. A suggested primary mechanism of action of 
acamprosate is that acamprosate exerts its actions through glutama-
tergic mechanisms [53, 54]. Specifically, acamprosate decreased 
the stimulation of neuronal firing induced by iontophoretic use of 
L-glutamate onto cortical neurons in vivo, and subdued excitatory 
postsynaptic potentials (EPSPs) induced by glutamate and N-
methyl-D-aspartate (NMDA). Further confirmation for the NMDA 
antagonist like mechanisms of acamprosate results from studies 
indicating that this amalgam antagonizes NMDA-induced excita-
tory postsynaptic currents (EPSCs) in hippocampal neurons [55] 
and upregulates NMDA receptor subunit manifestation comparable 
to that seen following treatment with non-competitive NMDA an-
tagonist MK-801 [55, 56]. However, Popp and Lovinger [57] found 
no effect of acamprosate on NMDA-mediated synaptic transmission 
in the CA1 region of the hippocampus. Nevertheless, others have 
discovered that acamprosate, in fact, enhances NMDA receptor 
roles in the hippocampal CA1 region [58] and the NAc [59]. Stud-
ies have proven that contact of acamprosate with the glutamate-, 
spermidine-, and/or MK-801-delicated binding site of the NMDA 
receptor [60-62], and as such, acamprosate is suggested to be a 
“NMDA modulator.” 
 While the exact molecular aim(s) of acamprosate are not yet 
recognized [63, 64], modern theories imply that acamprosate rees-
tablishes balances between excitatory and inhibitory amino acid 
neurotransmission caused by prolonged alcohol use [63, 65-67]. 
 In the mid-1980’s, Lhuontre et al. were the first to show that 
acamprosate reduced the incidence of relapse in alcoholics [68]. 
Following this early study, some meta-analyses demonstrated effect 
sizes ranging from small to moderate concerning reducing alcohol 
consumption, alcohol craving, and promoting abstinence [63, 69-
75]. In fact, it was observed that acamprosate was equally effective 
to the placebo in decreasing the relapse rates in a medical setting 
[76]. Further studies have also confirmed a lack of effectiveness of 
acamprosate in decreasing alcohol use or desire, or encouraging 
abstinence [77-80]. However, others have implied that the start of 
acamprosate treatment succeeding detoxification creates declines in 
alcohol desire as opposed to treatment while using alcohol actively 
[81]. LoCastro et al. [82] showed improvements in non-drinking 
related outcomes, measures of quality of life were superior in 
acamprosate versus placebo-treated patients. Certain identification 
of a subset of alcoholics may respond better to its benefits [83, 84]. 
Regarding other behavioral addictions, Raj (2010) found some 
benefit in the treatment of pathological gambling [85]. Concerning 
the value of acamprosate in addiction treatment of other abused 
drugs or behavioral addictions like pathological gambling, larger 
studies do not exist, and the smaller published studies have varied 
results. An example is a new case supporting the possible use of 
acamprosate in treating pathological gambling [85]. In contrast, 
Kampman (2011) found no significant effects in the use of 
acamprosate for the treatment of cocaine disorders [86]. These 
negative findings are discouraging because numerous rodent studies 
have revealed that acamprosate reduces the habituated reward ef-
fects of cocaine as well as drug- and cue-primed restoration of co-
caine-seeking behavior [87-89].  

2.5. Gabapentin  
 Gabapentin is an anticonvulsant medication that disrupts neu-
ronal transmission by inhibition of presynaptic voltage-gated Na+ 

and Ca2+ channels [90-92].  Consequently, gabapentin acts to in-
hibit the release of various neurotransmitters, including glutamate 
[93-99]. 
While studies have found that gabapentin is effective in mitigating 
the symptoms of alcohol withdrawal due to moderate to severe 
CNS hyperexcitability and convulsions [100-107], its role as anti-
drug abuse agent remains questionable. Several studies report that 
gabapentin (with dose ranges of 600–1200 mg/day) does not reduce 
the use of cocaine [108, 109], while others indicate that gabapentin 
decreases cocaine use and craving [110-114]. Despite some positive 
results with 600-1500mg/day [115-118] in reducing alcohol intake 
and prolonged abstinence, others, unfortunately, have described no 
effects of similar doses of gabapentin on alcohol craving [119, 
120]. Conflicting results indicate the need for further examination 
of gabapentin efficacy.  
 Gabapentin has been shown to reduce alcohol consumption, and 
craving [115-117] and prolong abstinence from alcohol use [118]. 
Other investigators, however, have shown that gabapentin does not 
reduce methamphetamine use [121], exhibits limited effects on 
facilitating abstinence from smoking [122], and does not enhance 
subjective withdrawal symptoms in opiate-dependent subjects 
[123]. Thus far, gabapentin has not been scientifically tested for 
efficacy of addiction treatment and may even exacerbate alcohol-
ism.   

2.6. Topiramate 
 Topiramate, similar to anticonvulsants such as gabapentin and 
lamotrigine, functions through multiple mechanisms: inhibition of 
presynaptic voltage-gated Na+ and Ca2+ channels (thereby inhibit-
ing the release of neurotransmitters including glutamate) and acti-
vation of type A GABA (GABAA) receptors [90, 91, 124]. Topi-
ramate also works as an antagonist at α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) [125, 126]. These antagonist 
effects on the AMPA receptor are active in mediating drug self-
administration and relapse potential [127-130], and notable because 
of the involvement of this glutamate receptor subtype in the neu-
roadaptive changes resulting from drugs of abuse. Reported 
effective doses of topiramate range from 75–350 mg/day. 
 Furthermore, topiramate may also aid in the amelioration of 
benzodiazepine withdrawal symptoms [131] in addition to attenua-
tion of alcohol withdrawal symptoms similar to the amelioration 
observed with gabapentin and lamotrigine [132]. Some recent stud-
ies have demonstrated the efficacy of topiramate in reducing alco-
hol craving, heavy consumption, and alcohol’s subjective effects 
[133-139]. Topiramate ability to decrease compulsive drinking may 
be a result of its modulation of impulsivity and improvement of 
behavioral inhibition [140]. One study in particular reported indica-
tions that topiramate performed better than naltrexone, the “gold 
standard” in anti-alcoholism medication, in prolonging abstinence 
and decreasing continuous drinking and relapse [141].  
 Topiramate has been shown to reduce craving and cocaine use 
in cocaine-dependent individuals [142, 143]. However, the small 
sample sizes of these two clinical studies are limiting factors [144]. 
One case report, in particular, demonstrated that topiramate may 
reduce the use of methylenedioxymethamphetamine (MDMA, “Ec-
stasy”) [145]. For cigarette smokers, a few small studies have 
shown the benefits of topiramate in supporting abstinence from 
smoking [134, 146, 147]. Topiramate’s ability to prolong absti-
nence from smoking may be gender-specific, with comparatively 
better responses in males [148]. One study, though, found that topi-
ramate increased the subjective effects of withdrawal from smok-
ing, and the rewarding effects of a smoked cigarette without cue-
induced craving [149]. This effect parallels the results seen with 
lamotrigine. Overall this challenges the potential use of topiramate 
as an aid in smoking cessation. It has been shown to enhance the 
positive sensations and effects of methamphetamine [150]. Topi-
ramate may have potential in the treatment of addiction to alcohol 
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and possibly cocaine and nicotine although more comprehensive 
research is needed to determine its efficacy as a therapeutic for 
treating addiction. The effects of Topiramate have been linked to 
specific gene polymorphisms.    
 Regarding behavioral addiction, some recent small-scale studies 
and case reports indicate that topiramate is a potential treatment 
agent. Observed positive effects of topiramate include reduction of 
relapse to problematic gambling [151] and reduction of compulsive 
eating and sexual behavior [152-154]. It is clear that the clinical 
application topiramate should be further investigated to treat non-
drug addictions. However, long-term utilization should be consid-
ered with caution because it may stimulate GABA signaling and 
attenuate dopamine release. 

2.7. Dopamine Agonist Therapy: Changing the Recovery Land-
scape  
 In the right direction other compounds that are enkephalinase 
inhibitors affect dopamine release. Dopamine increases in 
dialysates from the striatum of freely moving rats were induced 
using the enkephalinase inhibitor sodium nitroprusside. This 
compound has not yet been studied by itself as an anti- craving 
substance [155]. 
 Existing neurologic circuits, particularly the brain reward sys-
tem and the dopamine D2 receptors, shed light on reward mecha-
nisms affecting behavioral craving [156]. Overall the effect of 
neurotransmitter activity within the mesolimbic system results in 
the release of dopamine in NAc that interacts with dopamine D1-
D5 receptors. This dopamine release results in the feeling of reward 
[1, 157-168]. Consequently, this "reward cascade" [2] involves 
serotonin release and subsequent stimulation of hypothalamic 
release of enkephalin. This enkephalin, in turn, acts to inhibit 
GABA in the substania nigra, regulating the amount of DA released 
the "reward site," the NAc [169-171] through the raphe nuclei. That 
idea that NAc dopamine maintains and controls our normal drives 
relating to pleasure is well established [172-174]. In fact, dopamine 
is thought of as the anti-stress and pleasure molecule [175-179]. 
Synaptic release of dopamine stimulates some receptors (D1-D5), 
leading to increased feelings of well-being and stress reduction 
[180-182]. Positron emission tomography (PET) has demonstrated 
that when levels of D2 receptors in non-dependent individuals 
compared to levels of D2 receptors in drug and alcohol dependent 
subjects D2 receptor levels are substantially lower [183].  
 In animals, overexpression of the D2 receptor via vector deliv-
ery of the D2 gene resulted in a notable reduction of alcohol con-
sumption [184-187]. KB220 variations of the dopamine agonistic 
agent can normalize brain function by a number of neurochemical 
effects including restoration of brain dopamine at the reward site, 
reduction of excessive craving behaviors, and induction of en-
hanced resting state functional connectivity [188]. Table 1 is a list 
of preclinical and clinical studies that were important in the devel-
opment of KB220 variations. The research has been carried out 
over 43 years and during that time the experimental substance has 
been called many names, some to describe its function as under-
standing changed and grew, for example, Neuronutrient Amino 
Acid Therapy (NAAT) and some due to product development, for 
instance, Genotrim and SAAVE. 

3. NEUROCHEMICAL MECHANISMS FAVOR AMINO 
ACID –ENKEPHALINASE INHIBITION THERAPY  

3.1. Background  
 Volkow et al. pointed out that recent development of effective 
treatments for alcoholism has increased public interest in pharma-
cologic therapies [223]. A meta-analysis of randomized controlled 
studies was produced to determine appropriate forms of pharma-
cotherapy for the treatment of alcohol dependence. It was 
concluded that several pharmacotherapeutic agents exhibited safe 

and effective qualities in the long-term, intermediate-term, and 
short-term periods of follow-up. In this case, the agents were acam-
prosate, naltrexone, and fluoxetine and citalopram, respectively. 
Studies involving zimeldine, nialamide, L-dopa, viloxazine, and 
Tetrabamate failed to demonstrate significant efficacy for these 
agents in alcoholism treatment. Similarly, lithium, phenytoin, bro-
mocriptine, apomorphine, and buspirone demonstrated ambiguous 
and mixed results. With these circumstances, continued research is 
needed to identify the methods of pharmacotherapy that would fit 
the needs of different patients.  
 To reiterate meta-analyses also show poor compliance with 
naltrexone and acamprosate [224]. Specifically, a systematic review 
of the literature (1990-2002) and meta-analysis of randomized and 
controlled clinical trials assessing acamprosate and naltrexone ther-
apy for alcohol dependence was inconclusive. Estimates of effect 
were calculated according to the fixed-effects model. Primary out-
comes such as relapse and abstinence rates, cumulative abstinence 
duration and treatment compliance were considered. Thirty-three 
studies met these inclusion criteria. Acamprosate was associated 
with a marked improvement in abstinence rate and days of cumula-
tive abstinence. Meanwhile, short-term administration of naltrexone 
reduced the relapse rate significantly but was not associated with a 
significant modification in the abstinence rate. Due to insufficient 
data, naltrexone's efficacy over prolonged periods was not able to 
be determined. It is possible that implantable naltrexone may in-
crease compliance in the longer – term (about 4-12 months). 
Acamprosate demonstrated a good safety pattern and an improve-
ment in treatment compliance. Naltrexone was well tolerated and 
although it had had more side effects it was nevertheless not associ-
ated with lowered adherence to treatment. Despite these findings, 
overall compliance was relatively low with both medications [224].  
 Acamprosate and naltrexone are both effective as adjuvant 
therapies for alcohol dependence in adults. The former is especially 
useful in a therapeutic approach that targets abstinence, whereas 
naltrexone is better suited to programs aimed at managing con-
sumption. Both are safe and acceptably tolerated, although compli-
ance remains the main concern in clinical applications.  
 With this information, we are proposing that compounds like 
NAC, Acamprosate, sodium nitroprusside, and others are not very 
effective clinically. However combined with compounds known to 
enhance brain opioid peptides might have a much better outcome. 
They could lead to enhanced neuroplasticity following drug abuse 
[225] and prevention of relapse to substance and non-substance-
related addictive behaviors  

3.2. Compounds Directed to Enhance Brain Opioids  
 As far as is known, a combination of glutaminergic activators 
with compounds to inhibit enkephalinase to act as therapeutic 
agents to treat RDS has not been explored.  
 "Enkephalinase," a peptidase capable of degrading enkephalins, 
has been characterized in man, in both plasma and cerebra-spinal 
fluid (CSF). D-phenylalanine (d-Pha) was shown to decrease 
enkephalinase activity in plasma and CSF in humans [226]. In fact, 
another enkephalinase inhibitor Bestatin significantly reduced alco-
hol intake in genetically bred alcohol-preferring rats [226] known to 
have low brain endorphin levels.  
 In morphine-sensitive Wistar rats i.p. inoculation of 300-600 
mg/kg d- d-Pha did not change the nociception (tail-flick test), but 
evoked a dose-dependent analgesic effect in morphine-resistant 
rats. Chronic morphine administration induced tolerance as d-Pha 
injection evoked an analgesic effect in morphine-sensitive rats. It is 
implied that morphine-resistant rats exhibit congenital enkephalin-
ase activity while morphine-tolerant rats have an acquired elevated 
level of enkephalinase activity, which blocks morphine analgesic 
action.
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Table 1. Pre-clinical and clinical studies that lead to the development of dopamine agonistic, amino acid and enkephalinase inhibi-
tion therapies. 

Preclinical Studies 

Year Reference Key points 

1973 
Blum K, Calhoun W, Merritt J, et al. L-DOPA: 
effect on ethanol narcosis and brain biogenic 
amines in mice. Nature. 242: 407-409 [189]. 

Increased brain L-DOPA increases brain dopamine in mice and causes inebriated mice to 
sleep. Dopamine, l-tryptophan, and alcohol work similarly in the brain. 

1974 
Blum K, Wallace JE, Calhoun W, et al. Ethanol 

narcosis in mice: serotonergic involvement. 
Experientia 30:1053-1054 [190]. 

When mice were given alcohol and 1-tryptophan or saline the mice given 1-tryptophan 
went to sleep, while, the mice given saline did not. 1-tryptophan and alcohol work simi-

larly in the brain. 

1987 

Blum K, Wallace JE, Trachtenberg MC, et al. 
Enkephalinase inhibition: Regulation of ethanol 

intake in mice.  Alcohol: 4; 449-456 [191]. 

Mice genetically predisposed to like alcohol have a measured deficiency in enkephalin. 
D-phenylalanine and hydrocinnamic acid are substances known to stop the breakdown of 
enkephalin in the brain -the amount of enkephalin available in the brain increases. When 
the amount of enkephalin available in the brain increases both voluntary and forced in-

take of alcohol decreases. D-phenylalanine is one of the ingredients in NAAT. 

Clinical Studies 

Year Reference Key points 

Blum K, Trachtenberg MC, Elliott CE, et al. 
Improvement of inpatient treatment of the alco-
holic as a function of neurotransmitter restora-
tion: a pilot study. The International journal of 

the addictions 23: 991-8 [192]. 

 

First small clinical trial of SAAVE (precursor amino acid loading and enkephalinase 
inhibition -earliest version of NAAT). Designed to elevate levels of enkephalin(s), sero-

tonin, catecholamines, and GABA, thought to be deficient in alcoholics. Compared to 
controls those who took SAAVE had lower building up to drink score, required no PRN 

benzodiazepines, ceased having tremors 24 hours earlier, and had less depression. 

Blum K, Trachtenberg MC, Elliott CE, et al. 
Enkephalinase inhibition and precursor amino 
acid loading improves inpatient treatment of 

alcohol and polydrug abusers: double-blind pla-
cebo-controlled study of the nutritional adjunct 

SAAVE. Alcohol. 5(6): 481-93 [193]. 

Double blind placebo controlled clinical trial of SAAVE of 62 people with Substance Use 
Disorder (SUD). Results reduced stress as measured by skin conductance, improved 

Physical and BESS (behavioral, emotional, social and spiritual) Scores, and had a six-fold 
decrease in leaving Against Medical Advice (AMA) rates. 

1988 

Blum K, Allison D, Trachtenberg MC, et al. 
Reduction of both drug hunger and withdrawal 
against advice rate of cocaine abusers in a 30 

day inpatient treatment program by the 
neuronutrient Tropamine. Current Therapeutic 

Research 43: 1204-1214 [194]. 

Comparison of the effects of Tropamine [T] – (amino acid and vitamin supplement), 
SAAVE [S]-(a neuronutrient supplement) and no supplement [C] on a group of cocaine 

abusers in a 30 day hospital treatment program. AMA rate [C] 37.5%, [S] 26.6%, and [T]   
4.2 %. Tropamine decreased the AMA rate by significant reduction of drug hunger. 

Brown RJ, Blum K, Trachtenberg, MC, Neuro-
dynamics of relapse prevention: a neuronutrient 

approach to outpatient DUI offenders. Psy-
choactive Drugs 22: 173-187 [195]. 

Relapse prevention using neuronutrients SAAVE and Tropamine in DUI offenders; either 
alcohol or cocaine. Reduced relapse rates and enhanced recovery in 10 week outpatient 

setting. After ten months recovery rate was SAAVE 73% and Tropamine 53%. 

1990 
Blum K, Trachtenberg MC, Cook DW.  Neuro-
nutrient effects on weight loss in carbohydrate 

bingers; an open clinical trial. Curr Ther Res.48: 
217-233 [197]. 

Examine the effects of PCAL-103 (NAAT) on compulsive eating and weight loss in 27 
outpatients attending a supervised diet-controlled treatment program. The PCAL-103 

average weight loss was 26.96 lbs vs. 10.2 lbs in the control group. Relapse 18.2% in the 
PCAL-103 group vs. 81.8% in the control group. 

1996 

Cold JA, NeuRecover-SATM in the Treatment 
of Cocaine Withdrawal and Craving: A Pilot 
Study. Clinical Drug Investigation. 12(1):1-7 

[198]. 

Small preliminary study of the efficacy of NeuRecover-SATM (formerly Tropa-
mine+TM) in the treatment of cocaine withdrawal and craving.  Cocaine craving de-

creased significantly in the NeuRecover-SATM group. 

1997 

DeFrance JF, Hymel C, Trachtenberg MC, et al. 
Enhancement of attention processing by Kantroll 
in healthy humans: a pilot study. Clinical Electro-

encephalography 28: 68-75 [199]. 

Cognitive processing speeds in normal young adult volunteers were measured before and 
after 28-30 days of supplementation with a combination of amino acids (NAAT), vitamins 
and minerals. Cognitive processing speeds were enhanced by statistically significant am-

plitude of the P300 component of the Event Related Potentials (ERPs). FOCUS IM-
PROVED 
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(Table 1) Contd.... 
 

Preclinical Studies 

Year Reference Key points 

 

Blum K, Cull JG, Chen TJH, et al. Clinical evi-
dence for effectiveness of Phencal™ in 

maintaining weight loss in an open-label, con-
trolled, 2-year study. Current Therapeutic Re-

search 55(10) 745-763 [200]. 

Of 247 Outpatients in a very-low-calorie fasting program 130 who were having difficulty 
attaining their desired weight or maintaining their desired weight constituted the experi-
mental group who took PhenCal™ and the rest 117 took vitamins 117 were the control 

group. The PhenCal™ group compared to the control lost twice as much weight, regained 
14.7% of the weight while the control group regained 41.7%, decrease in food cravings 
for females 70% and males 63%, and decreased in binge eating for females 66% and 

males 41%. 

2001 

Ross J. Amino-acid precursor and enkephalinase 
inhibition therapy: evidence for effectiveness in 

treatment of “Reward Deficiency Syndrome 
(RDS) with particular emphasis on eating disor-

ders. Mol Psychiatry. Feb; 6(1 Suppl 1):S1-8. 

Preliminary evaluation of six randomly selected former eating disordered female clients 
(three were also chemically dependent), contacted at 9 months and 3 years of treatment 

with amino-acid precursor and enkephalinase inhibition therapy. All 6 reported initial 
benefit, one relapsed at 6 months the other 5 all sustained, and in some cases exceeded 
expectations. 98% of 100 patients similarly treated and evaluated reported significant 

improvement in both mood and reduced substance craving. 

2004 

Chen TJ; Blum K, Payte, JT, et al. Narcotic an-
tagonists in drug dependence: pilot study showing 

enhancement of compliance with SYN-10, 
amino-acid precursors and enkephalinase inhibi-
tion therapy. Medical Hypotheses 63 (3): 538-48 

[201]. 

A combination of Trexan (a narcotic antagonist) and amino-acids was used to detoxify 
either methadone or heroin addicts. Results were dramatic in terms of significantly en-

hancing compliance to continue taking Trexan. Trexan alone for rapid detoxification the 
average number of days of compliance calculated on 1000 patients is 37 days. 12 subjects 
tested, receiving both the Trexan and amino-acid therapy taking the combination for an 

average of 262 days. Suggests coupling amino-acid therapy and enkephalinase inhibition, 
while blocking the delta-receptors with a pure narcotic antagonist as a novel method to 
induce rapid detox in chronic methadone patients and prevent relapse, and testing this 
hypothesis with the sublingual combination of the partial opiate mu receptor agonist 

buprenorphine. 

2006 

Blum K, Chen TJ, Meshkin B, et al. Reward 
deficiency syndrome in obesity: a preliminary 
cross-sectional trial with a Genotrim variant. 

Adv Ther. 2006; 23(6):1040-1051 [202]. 

Consumption of large quantities of alcohol or carbohydrates (carbohydrate bingeing) 
stimulates production and usage of dopamine within the brain. Obesity is due to the need 
to make up for inadequate dopaminergic activity in the reward center of the brain. This 

has been called reward deficiency syndrome (RDS) used to categorize such genetic 
biologic influences on behavior. RDS must be addressed at the same time as behavioral 
modifications are implemented to adequately treat obese patients. In this small observa-

tional trial; 24 individuals completed a survey on which they documented 15 categories of 
benefit during their experience with a GenoTrim a NAAT formulation customized to 

DNA. Statistical analysis of the survey results demonstrated that stress reduction lead to 
improved sleep, enhanced energy, and improved focus and performance, reduced appe-

tite, loss of unwanted weight, decreased body inches and enhanced well-being. 

Chen TJ, Blum K, Waite RL, et al. Gene 
\Narcotic Attenuation Program attenuates sub-

stance use disorder, a clinical subtype of reward 
deficiency syndrome. Advances in Therapy 24: 

402-414 [203]. 

A one-year prospective study evaluated the effects of taking Haveos (SynaptamineTM) on 
61 compliant patients in a comprehensive outpatient clinical program. Results after 12 

weeks include a significant decrease in craving. Results after one year include building 
up to relapse scores and ability to refrain from drug-seeking behavior both significantly 

improved. The dropout rate for alcohol users 7% and psychostimulant users 73% 

Blum K, Chen TJH, Downs BW, et al. Synap-
tamine (SG8839),TM An Amino-Acid 

Enkephalinase Inhibition Nutraceutical Improves 
Recovery of Alcoholics, A Subtype of Reward 

Deficiency Syndrome (RDS). Trends in Applied 
Sciences Research 2 (3): 132-138. 

In an open clinical study, Amino-Acid Enkephalinase Inhibition Nutraceutical improved 
symptomatology of 600 recovering Alcoholics. Emotional and behavioral recovery scores 

significantly improved after administration of oral and intravenous Synaptamine. Mean 
reductions for craving, depression, anxiety, anger, fatigue, lack of energy and crisis were 

all significantly greater than 50% (p<0.001). 
2007 

Chen TJH , Blum K, Kaats G, et al. Chromium 
Picolinate (Crp) A putative Anti-Obesity Nutrient 
Induces Changes In Body Composition As Func-
tion Of The Taq1 Dopamine D2 Receptor Gene. 

Gene Ther Molboil 11; 161-170 [205]. 

Chromium Picolinate (CrP) was tested against placebo in groups of obese patients tested 
for the Taq1 Dopamine D2 Receptor Gene. In carriers of the DRD2 A2 genotype weight 

loss and other changes in body composition were significant. They were not significant 
for patients with the A1/A1 or A1/A2 allele. These results suggest that the dopaminergic 

system, specifically the density of the D2 receptors, confers a significant differential 
therapeutic effect of CrP in terms of weight loss and change in body fat. 
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Preclinical Studies 

Year Reference Key points 

 

Blum K, Chen TJH, Williams L, et al. A short 
term pilot open label study to evaluate efficacy 
and safety of LG839, a customized DNA di-

rected nutraceutical in obesity: Exploring Nutri-
genomics. Gene Ther. Mol. Boil. 2007; 12: 371-

382 [206]. 

Preliminary investigational study to evaluate the impact of polymorphisms of five candi-
date genes on treatment for obesity with NAAT. The formula for each patient was cus-

tomized based on their genetic results. 

 

Blum K, Chen AL, Chen TJ, et al. LG839: anti-
obesity effects and polymorphic gene correlates 

of reward deficiency syndrome. Adv Ther 25 
(9): 894-913 [207]. 

A novel experimental DNA-customized nutraceutical, LG839. Polymorphic correlates 
were obtained for a number of genes (LEP, PPAR-gamma2, MTHFR, 5-HT2A, and 

DRD2 genes) with positive clinical parameters tested in this study. Significant results were 
observed for weight loss, sugar craving reduction, appetite suppression, snack reduction, 
reduction of late night eating, increased energy etc. Only the DRD2 gene polymorphism 

(A1 allele) had a significant Pearson correlation with days on treatment. 

2008 

Blum K, Chen TJH, Chen ALC, et al. Dopamine 
D2 Receptor Taq A1 allele predicts treatment 

compliance of LG839 in a subset analysis of pilot 
study in the Netherlands. Gene Ther Mol Biol 

2008; 12: 129-140 [208]. 

Hypothesized that genotyping certain known candidate genes would provide DNA-
individualized customized nutraceuticals that may have significant influence on body re-
composition by countering various genetic traits. Genotyped for the dopamine D2 recep-

tor (DRD2), methylenetetrahydrofolate reductase (MTHFR), serotonin receptor (5-
HT2a), Peroxisome Proliferator Activated Receptor gamma (PPAR-γ), and Leptin (OB) 

genes. Systematically evaluated the impact of polymorphisms of these five candidate 
genes as important targets for the development of a DNA-customized nutraceutical 

LG839 [dl-phenylalanine, chromium, l-tyrosine other select amino-acids and adaptogens] 
to combat obesity with special emphasis on body recomposition as measured by Body 

Mass Index (BMI). In the 41 day period, we found a trend in weight loss whereby 71.4% 
of subjects lost weight. 

2009 

Blum K, Chen ALC, Chen TJH, et al. Putative 
targeting of Dopamine D2 receptor function in 

Reward Deficiency Syndrome (RDS) by Synap-
tamine Complex™ Variant (KB220): Clinical 

trial showing anti-anxiety effects. Gene Ther Mol 
Biol 13: 214-230 [209]. 

Brain dopamine has been implicated as the so-called “anti-stress molecule.” The present 
study investigated anti-anxiety effects of Synaptamine Complex [KB220], a dopaminergic 
activator, in a randomized double-blind placebo-controlled study in alcoholics and poly-
drug abusers attending an in-patient chemical dependency program. Patients receiving 

Synaptamine Complex [KB220] had a significantly reduced stress response as measured 
by SCL, compared to patients receiving placebo. 

Braverman ER, Braverman D, Acrui V, et al. 
Targeting Noradrenergic and dopaminergic 

Mechanistic Sites, Hormonal Deficiency Reple-
tion Therapy and Exercise: A case report. The 

American Journal of Bariatric Medicine. 25 
(2)18-28 [210]. 

A case study evaluating sustained weight loss with Synaptamine complex in conjunction 
with Diethypropion (Tenuate®), hormonal repletion therapy; use of the Rainbow Diet® 
and light exercise.  After one year, the 58 year old patient's BMT decreased from 32 to 
25.4kg/m2 representing a 6.9kg/m2 reduction. His body fat composition decreased from 

36.91% to 17.8% as measured by the Hologic DEXA scanner. 

Miller DK, Bowirrat A, Manka M, et al. Acute 
intravenous synaptamine complex variant 

KB220™ "normalizes" neurological dysregula-
tion in patients during protracted abstinence from 
alcohol and opiates as observed using quantita-

tive electroencephalographic and genetic analy-
sis for reward polymorphisms: part 1, pilot study 
with 2 case reports. Postgrad Med. 122(6):188-

213 [211]. 

Intravenous Synaptamine complex in protracted abstinence from alcohol and opiates 
analyzed by qEEG. Report that the qEEGs of an alcoholic and a heroin abuser with exist-

ing abnormalities (i.e., widespread theta and widespread alpha activity, respectively) 
during protracted abstinence are significantly normalized by the administration of 1 intra-

venous dose of Synaptamine Complex Variant KB220™ 2010 

Blum K, Chen TJ, Morse S, et al. Overcoming 
qEEG abnormalities and reward gene deficits 

during protracted abstinence in male psy-
chostimulant and polydrug abusers utilizing puta-
tive dopamine D2 agonist therapy: part 2. Post-

grad. Med. Nov; 122(6):214-226 [212]. 

Protracted Abstinence in Psychostimulant abusers. qEEG analysis in DRD2 A1 allele 
carriers. Compared to placebo -Synaptose Complex KB220Z™ induced positive regula-

tion of the dysregulated electrical activity of the brain in these addicts. 
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2011 

Blum K, Stice E, Liu Y, et al. “Dopamine 
Resistance” in brain reward circuitry as a 
function of DRD2 gene receptor polymor-

phisms in RDS: Synaptamine complex 
variant (KB220) induced “Dopamine 

Sensitivity” and enhancement of happi-
ness. XIX World Congress of Psychiatric 
Genetics, September 10-14th. Washington 

DC [213]. 

Synaptamine Complex Variant [KB220] ™ as an activator of the mesolimbic system and ad-
ministration significantly reduces or “normalizes” aberrant electrophysiological parameters of 
the reward circuitry site. Based on our QEEG studies presented herein we cautiously suggest 

that long-term activation of dopaminergic receptors (i.e., DRD2 receptors) will result in a 
proliferation of D2 receptors leading to enhanced "dopamine sensitivity" and an increased 

sense of happiness. Oral KB220 showed an increase of Alpha activity and an increase low Beta 
activity similar to 10-20 sessions with Neurofeedback.  

Chen D, Liu Y, He W, et al. Neurotrans-
mitter-precursor-supplement Intervention 
for Detoxified Heroin Addicts. Huazhong 
University of Science and Technology and 
Springer-Verlag Berlin Heidelberg [Med 

Sci 32(3):422-427 [414]. 

This study examined the effects of combined administration of tyrosine, lecithin, L-glutamine 
and L-5-hydroxytryptophan (5-HTP) on heroin withdrawal syndromes and mental symptoms in 

detoxified heroin addicts. The results showed that insomnia and withdrawal scores were 
significantly improved over time in participants in the intervention group as compared with 

those in the control group. A greater reduction in tension-anxiety, depression-dejection, anger-
hostility, fatigue-inertia and total mood disturbance, and a greater increase in their vigor-

activity symptoms were found at day 6 in the intervention group than in the control placebo 
group 

Miller M, Chen ALC, Stokes SD, et al. 
Early Intervention of Intravenous 

KB220IV- Neuroadaptagen Amino-Acid 
Therapy (NAAT)™ Improves Behavioral 

Outcomes in a Residential Addiction 
Treatment Program: A Pilot Study. Journal 
of Psychoactive Drugs 44: 398-409 [215]. 

In 129 patients a combination of IV and oral NAAR therapy (generic KB220) were assessed 
for Chronic Abstinence Symptom Severity (CASS) Scale over a 30 day period. Three scales 
were constructed based on this factor analysis: Emotion, Somatic, and Cognitive. All three 

scales showed significant improvement (P=0.00001) from pre-to-post –treatments: t=19.1 for 
Emption, t=16.1 for Somatic, and t= 14.9 for cognitive impairment. A two year follow-up in a 

subset of 23 patients showed: 21(91%) were sober at 6 months with 19(82%) having no relapse; 
19 (82% were sober at one year with 18 (78%) having no relapse; 21(91%) were sober at two-
year post-treatment with 16(70%) having no relapse. Note: these results of cause do not reflect 

any other recovery skills utilized by the patients including 12 steps program and Fellowship.   

2012 

Blum K, Oscar-Berman M, Stuller E, et al. 
Neurogenetics and Nutrigenomics of 

Neuro-Nutrient Therapy for Reward De-
ficiency Syndrome (RDS): Clinical Rami-
fications as a Function of Molecular Neu-

robiological Mechanisms. J Addict Res 
Ther 3(5):139 [216]. 

New Definition of Addiction by American Society of Addiction Medicine (ASAM) is base 
Reward Cascade (BRC) Impairment leads to aberrant craving behavior and other behaviors 
such as Substance Use Disorder (SUD) due to a “hypodopaminergic” trait/state. Any impair-

ment due to either genetics or environmental influences on this cascade will result in a reduced 
amount of dopamine release in the brain reward site. After over four decades of development, 

neuro-nutrient therapy has provided important clinical benefits when appropriately utilized. 

2013 

Blum K, Oscar-Berman M, Femino J, et al. 
Withdrawal from Buprenor-

phine/Naloxone and Maintenance with a 
Natural Dopaminergic Agonist: A Cau-

tionary Note. J Addict Res Ther 4(2). doi: 
10.4172/2155-6105.1000146 [217]. 

A case study of a 35-year-old female in the film industry with a history of chronic pain from 
reflex sympathetic dystrophy and fibromyalgia. Total monthly prescription costs including sup-
plemental benzodiazepines, hypnotics and stimulants exceeded $50,000. Withdrawal symptoms 
were carefully documented when she precipitously stopped taking buprenorphine/naloxone. At 

432 days post Suboxone® withdrawal the patient is being maintained on KB220Z, has been 
urine tested and is opioid free. Genotyping data revealed a moderate genetic risk for addiction 

showing a hypodopaminergic trait. 

2015 

McLaughlin T, Blum K, Oscar-Berman M, 
et al. Putative dopamine agonist (KB220Z) 
attenuates lucid nightmares in PTSD pa-
tients: Role of enhanced brain reward 

functional connectivity and homeostasis 
redeeming joy. J Behav Addict 4(2):106-
115. doi: 10.1556/2006.4.2015.008 [218]. 

Lucid dreams may be associated with psychiatric conditions, including Post-Traumatic Stress 
Disorder (PTSD) and Reward Deficiency Syndrome-associated diagnoses. We present two 

cases of dramatic alleviation of terrifying lucid dreams in patients with PTSD. The medication 
visit notes reveal changes in the frequency, intensity and nature of these dreams after the 

complex putative dopamine agonist KB220Z was added to the first patient's regimen. The sec-
ond PTSD patient, who had suffered from lucid nightmares, was administered KB220Z to at-
tenuate methadone withdrawal symptoms and incidentally reported dreams full of happiness 

and laughter. 
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McLaughlin T, Blum K, Oscar-Berman M, 
et al. Using the Neuroadaptagen KB200z™ 

to Ameliorate Terrifying, Lucid Night-
mares in RDS Patients: the Role of En-

hanced, Brain-Reward, Functional Connec-
tivity and Dopaminergic Homeostasis. J 
Reward Defic Syndr. 2015; 1(1):24-35 

[219]. 

Lucid dreams could be unpleasant or terrifying, at least in the context of patients, who also 
exhibit characteristics of Reward Deficiency Syndrome (RDS) and Posttraumatic Stress Disor-
der (PTSD). Eight clinical cases, with known substance abuse, childhood abuse and diagnosed 

PTSD/RDS were presented. The administration of a putative dopamine agonist, KB200Z™, was 
associated with the elimination of unpleasant and/or terrifying, lucid dreams in 87.5% of the 

cases presented, whereas one very heavy cocaine abuser showed a minimal response. These 
results required the continuous use of this nutraceutical. If these results in a small number of 

patients are indeed confirmed, we may have found a frontline solution to a very perplexing and 
complicated symptom known as lucid dreams. 

 

Blum K, Liu Y, Wang W, et al. rsfMRI 
effects of KB220Z™ on neural pathways 
in reward circuitry of abstinent genotyped 

heroin addicts. Postgrad Med. 2015; 127(2): 
232-241. [188]. 

KB220Z induced an increase in BOLD activation in caudate-accumbens-dopaminergic path-
ways compared to placebo following 1-hour acute administration in abstinent heroin addicts. 
Increased functional connectivity was observed in a putative network that included the dorsal 
anterior cingulate, medial frontal gyrus, nucleus accumbens, posterior cingulate, occipital cor-

tical areas, and cerebellum. The results suggest a putative anti-craving/anti-relapse role of 
KB220Z in addiction by direct or indirect dopaminergic interaction. 

2016 

McLaughlin T, Febo M, Badgaiyan RD, 
Barh D, Dushaj K, et al. 2016. KB220Z™ a 
Pro-Dopamine Regulator Associated with 
the Protracted, Alleviation of Terrifying 

Lucid Dreams. Can We Infer Neuroplas-
ticity-induced Changes in the Reward Cir-

cuit? J Reward Defic Syndr Addict Sci 
2(1): 3-13 [220]. 

The four patients initially reported a gradual but, then, complete amelioration of their long-
term, terrifying, lucid dreams, while taking KB220Z. The persistent amelioration of these 

dreams continued for up to 12 months, after - KB220Z. These particular cases raise the scien-
tific possibility that KB200Z increases both dopamine stability as well as functional connectivity 
between networks of brain reward circuitry in both rodents and humans. In order to attempt to 
understand the possibility of neuroplasticity, we evaluated the effect of KB220Z in non-opioid-
addicted rats utilizing functional Magnetic Resonance Imaging methodology. While we cannot 
make a definitive claim because rat brain functional connectivity may not be exactly the same 
as humans, it does provide some interesting clues. We did find following seeding of the dorsal 

hippocampus, enhanced connectivity volume across several Regions of Interest (ROI), with the 
exception of the pre- frontal cortex. Interestingly, the latter region is only infrequently acti-

vated in lucid human dreaming, when the dreamer reports that he/she had the thought that they 
were dreaming during the lucid dream. 

Bruce Steinberg, Kenneth Blum, Thomas 
McLaughlin, Joel Lubar, Marcelo Febo et 

al. Low-Resolution Electromagnetic Tomo-
graphy (LORETA) of changed Brain Func-
tion Provoked by Pro-Dopamine Regulator 
(KB220z) in one Adult ADHD case. Open 

J of Clin. Med. Case Rep. 2;(11) [221]. 

Attention Deficit-Hyperactivity Disorder (ADHD) often continues into adulthood. Recent neu-
roimaging studies found lowered baseline dopamine tone in the brains of affected individuals 
that may place them at risk for Substance Use Disorder (SUD). This is an observational case 

study of the potential for novel management of Adult ADHD with a non-addictive glutaminer-
gic-dopaminergic optimization complex KB200z. Low-resolution electromagnetic tomography 
(LORETA) was used to evaluate the effects of KB220z on a 72-year-old male with ADHD, at 
baseline and one hour following administration. The resultant z-scores averaged across Eyes 
Closed, Eyes Open and Working Memory conditions, increased for each frequency band, in 
the anterior, dorsal and posterior cingulate regions, as well as the right dorsolateral prefrontal 
cortex during Working Memory, with KB220z. These scores are consistent with other human 
and animal neuroimaging studies that demonstrated increased connectivity volumes in reward 
circuitry and may offer a new approach to ADHD treatment. However, larger randomized 

trials to confirm these results are required. 2016 

Duquette LL, Mattiace F, Blum, K, et al. 
Neurobiology of KB220Z-Glutaminergic-

Dopaminergic Optimization Complex 
[GDOC] as a Liquid Nano: Clinical Activa-

tion of Brain in a Highly Functional Clini-
cian Improving Focus, Motivation and 

Overall Sensory Input Following Chronic 
Intake. Clin Med Rev Case Rep 3(5):104 

[222]. 

We disclose self-assessment of a highly functional professional under work-related stress fol-
lowing KB220Z use, GDOC for one month. Subject self-administered GDOC using one-half-
ounce twice a day. He reported that during first three days, unique brain activation occurred; 

resembling white noise after 30 minutes and sensation was strong for 45 minutes and then dissi-
pated. He described effect as if his eyesight improved slightly and pointed out that his sense of 
smell and sleep greatly improved. Subject experienced a calming effect similar to meditation 

that could be linked to dopamine release. He also reported control of going over the edge after 
a hard day’s work, which was coupled with a slight increase in energy, increased motivation to 
work, increased focus and multi-tasking, with clearer purpose of task at hand. Subject felt less 
inhibited in a social setting and suggested that GDOC increased his Behavior Activating System 

(reward), while having a decrease in the Behavior Inhibition System (caution). 
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 In acupuncture-resistant rabbits, d-Pha injection induced an 
analgesic effect, which was enhanced and prolonged by auriculo-
acupuncture stimulation. It has been suggested that the recovery of 
pain sensibility after acupuncture analgesia is determined by 
enkephalinase's activation by d-Pha inhibitory effects [228].    
 Blum et al. (1987) first reported altered alcohol intake in mice 
with a genetic predisposition to alcohol preference and that the 
mice exhibited innate brain enkephalin deficiencies [228]. Success-
ful attenuation of both volitional and forced ethanol intake, respec-
tively, was the result of acute and chronic treatment using hydro-
cinnamic acid and d-Pha, which are both known carboxypeptidase 
(enkephalinase) inhibitors. Since these agents raise brain 
enkephalin levels through enkephalinase inhibitory activity, we 
propose that excessive alcohol intake and abuse may be managed or 
regulated by alteration of endogenous brain opioid peptides.   
 D-Pha, bacitracin, and puromycin all produce prolonged 
naloxone-reversible analgesia in mice. This analgesic potency is 
similar to that of compounds such as Thiorphan an inhibitor of met-
enkephalin degradation by mouse brain enzymes. D-Pha potentiates 
acupuncture analgesia in mice and humans and has been used to 
ameliorate a variety of human chronic pain conditions [230].  
 Much evidence demonstrates that various compounds, which 
inhibit the degradation of met-enkephalin, can produce naloxone-
reversible analgesia in mice. Such compounds also potentiate the 
analgesia observed with treatment by acupuncture, foot shock, and 
transcutaneous nerve stimulation in animals and humans. Potency 
or efficacy of these analgesics parallels their ability to act as inhibi-
tors of enkephalinase in the brains of mice. D-Pha is an example of 
an enkephalinase inhibitor and has been successful in the 
management of chronic intractable pain in humans and as an ad-
junct in theee treatment of many other painful conditions with acu-
puncture. D-Pha has a hypotensive effect and effects on behavior 
and does not induce tolerance and dependence when used long-term 
in animals and humans [226]. Furthermore, Ehrenpries suggested 
that various compounds that inhibit the degradation of enkephalins, 
as expected, produce naloxone reversible analgesia. They also in-
duce analgesia produced by enkephalins and acupuncture. D-Pha is 
also an anti-inflammatory, proving to be beneficial to chronic, in-
tractable pain in human patients. Russel and McCarty [231] pro-
posed the enkephalinase inhibitors may be effective in some human 
"endorphin deficiency diseases" including depression, schizophre-
nia, convulsive disorders and arthritis. Such compounds may allevi-
ate other conditions associated with decreased endorphin levels 
such as opiate withdrawal symptoms. 
 Chen et al. [232] successfully tested the hypothesis that by 
combining a narcotic antagonist and amino-acid therapy consisting 
of an enkephalinase inhibitor (D-Pha) and neurotransmitter 
precursors (L-amino acids) to stimulate the release of dopamine, 
compliance in methadone patients would be facilitated. These 
methadone patients were detoxified using naltrexone, a narcotic 
antagonist [232]. In this regard, Thanos and associates [185] found 
that delivery of the DRD2 gene into the NAc, via an adenoviral 
vector, significantly reduced both alcohol intake (64%) and ethanol 
preference (43%) in ethanol preferring rats. This increased level of 
DRD2 receptors then returned to baseline with concomitant restora-
tion of ethanol preference. Overexpression of DRD2 produced a 
similar result in ethanol non-preferring rats in both alcohol prefer-
ence reduced (16%) and alcohol intake reduced by (75%). These 
findings underline the concept that elevated levels of DRD2 may be 
protective against alcohol abuse as reported by Volkow et al. [233]. 
In several studies, the A1 allele, in particular, has also been shown 
to associate with heroin addicts. Furthermore, other dopaminergic 
receptor gene polymorphisms have been correlated with opioid 
dependence. Kotler et al. [233] revealed that the 7 repeat allele of 
the DRD4 receptor is significantly over-presented in the opioid-
dependent cohort and confers a relative risk of 2.46 [233]. This 
finding has been confirmed by Li et al. [235] for the 5 and 7 repeat 

alleles in a study involving a Han Chinese case-controlled sample 
of heroin addicts [235]. Analogously, Duaux et al. [236] found a 
significant association with homozygote alleles of the DRD3-Bal 1 
in French Heroin addicts [236]. Strong supportive evidence was 
discovered in a study by NIAAA, suggesting that across multiple 
populations, DRD2 is a susceptibility gene for substance abusers 
[236]. Several other human clinical trials showed a reduction of 
opiate, cocaine, alcohol and sugar craving behavior by utilizing 
amino acid and enkephalinase inhibition therapy, see Table 1. 
While there is positive evidence for the utilization of d-Pha as a 
potential anti-craving agent by itself the addition of the entire 
KB220 complex; amino acid precursors like L-phenylalanine, L-
glutamate and L-tyrosine will better assist in releasing dopamine.  

4. DOES THE ADDICTIVE BRAIN FAVOR AMINO-ACID 
THERAPY? 
 The hypothesis has been that D2 receptor stimulation can be 
accomplished, via the use of a natural and therapeutic nutraceutical 
formulation KB220 that increases proliferation of D2 receptors by 
inducing DA release. Increased D2 receptor proliferation then 
induces a reduction of cravings in addictive patients. As seen in the 
research of Thanos et al. discussed above [185,187] DNA- directed 
compensatory overexpression of the DRD2 receptors (an example 
of gene therapy) can cause a significant reduction in craving 
behavior in alcohol preferring and cocaine self-stimulating rodents. 
Harnessing natural dopaminergic repletion as a strategy to promote 
long-term dopaminergic activation may ultimately lead to a safe 
and effective therapy for RDS behaviors including SUD, Attention 
Deficit Hyperactivity Disorder (ADHD), Obesity and other reward 
deficient aberrant behaviors. This strategy is further supported by 
the role of dopamine in the NAc where it acts as a "wanting" mes-
senger in the mesolimbic DA system [238]. 
 Research has shown that proliferation of D2 receptors along 
with G proteins results from prolonged stimulation of DA receptors 
by agonists. Boundy et al. demonstrated that that stimulation of DA 
receptors by Bromocriptine, the pure D2 receptor agonist, results in 
proliferation of D2 receptors over a 14-day period in transfected 
kidney cells and also in Spodoptera frugiperda insect cells [239]. 
They also demonstrated that administration of a dopamine antago-
nist caused the proliferation of D2 antagonist receptors. These find-
ings suggest that environmental manipulation may result in receptor 
proliferation despite existing genetic antecedents. Understanding 
the nature of agonist activity may explain these observations; ago-
nist activity primarily involves stimulation of transcribed mRNA. 
Negative feedback that enhances mRNA-directed D2 receptor 
proliferation is caused by activation of the DRD2/mRNA. This 
enhanced DRD2 proliferation is important to note as an increase in 
substance seeking is caused by a scarcity of DA D2 receptors [159, 
240]. If decreased D2 receptors correlated with increased craving 
behavior, then an increase in D2 receptors should, therefore, result 
in a reduction of craving behavior. A solution that stimulates DA 
release at the NAc naturally, as opposed to pathways in which 
potent dopamine agonists lead to dopamine down-regulation, 
should prove effective. Essentially, using precursor amino acids and 
simultaneous enkephalinase/COMT inhibition may systematically 
induce the natural release of dopamine without side effects, such as 
dopamine receptor downregulation, otherwise seen with other 
pharmaceuticals. While dopamine activation often occurs with tar-
geted pharmaceuticals such as Bromocriptine or other DA agonists 
[241], an approach that uses a strategy that mimics the brain's natu-
ral reward cascade may provide positive therapeutic results. 

5. WHY THE ADDICTIVE BRAIN FAVORS AMINO–ACID 
THERAPY [NAT™]  
 It has been established that after prolonged abstinence from 
drugs of choice, individuals will experience a more euphoric high, 
which can lead to relapse. This clinically observed “super sensitiv-
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ity” might point toward the existence of genetic dopaminergic po-
lymorphisms. Paradoxically, it is interesting to note that bro-
mocriptine, a dopaminergic agonist, causes an increase in brain 
reward activity in individuals who carry the DRD2 A1 allele com-
pared to DRD2 A2 carriers. Since A1 carriers, in comparison to A2 
carriers, exhibit much lower D2 receptor density, A1 carriers should 
theoretically experience a reduced sensitivity to dopamine agonist 
activity. However, low D2 receptor density corresponds to in-
creased reward sensitivity to bromocriptine. Furthermore, with 
chronic or long-term D2 agonists-therapy, there is a proliferation of 
D2 receptors in vitro. However, in vivo studies show the opposite a 
downregulation of D2 receptors after Bromocriptine administration 
[242]. This unexpected activity may make clear the importance of 
utilizing amino acid therapy. Before dopamine is synthesized L-
amino acid decarboxylase undergoes striatal activity, which is 
associated with the A1 allele. Specifically, Laakso et al. [243] re-
ported that the A1 allele corresponds to the increased activity of 
striatal L-amino acid decarboxylase in healthy Finish subjects 
[243]. They found that heterozygous carriers of the A1 allele 
(A1/A2; 10 subjects) had significantly higher [18%] ([18F] -
FDOPA uptake in the putamen than subjects without the A1 allele 
(A2/A2; 23 subjects).  
 These results are evidence that carriers of the A1 allele have 
increased activity of L-amino acid decarboxylase, which is an 
important enzyme for trace amine synthesis, and which is present in 
the final step of dopamine synthesis. This biochemical finding is 
beneficial for carriers of the A1 allele having reduced DRD2 recep-
tors. It seems reasonable that because of this known deficit the 
brain has set up a protective mechanism to drive more dopamine 
synthesis. As such the lower D2 expression due to the A1 polymor-
phism (a risk for all addictive behaviors) may be overcome by in-
creased activity of L-amino acid decarboxylase, especially when 
confronted with increased amino acid precursors like L-
phenylalanine and l-tyrosine part of amino-acid therapy as sug-
gested herein.    
 Carriers of the DRD2 A1 allele, then, may have an interesting 
intrinsic -protective mechanism waiting for amino-acid introduction 
such as L-phenylalanine and L-tyrosine (rate-limiting substrates in 
the synthesis of dopamine). Moreover, Ortez et al. [244] recently 
reported that in “tyrosine hydroxylase deficiency” the dopamine 
transporter (DAT) and vesicular monoamine transporter type 2 
were up-regulated leading to a hypodopaminergic trait [244]. Kim 
et al. [245] also showed that locomotor activity responses of these 
Dopamine-deficient (DA-/-) mice to dopamine D2 receptor agonists 
were 13-fold greater than the response elicited from wild-type mice 
[245]. Moreover, when Vrshek-Schallhorn et al. investigated the 
effects of the Acute Tyrosine Phenylalanine Depletion (ATPD) on 
decision making and reward, it was found that carriers with this 
amino-acid deficiency experienced an attenuated reward and reduce 
decision-making ability, as measured by the Iowa Gambling Task 
[34].   
 Separate and different from the effects of genetic mutations 
(variations and polymorphisms), the environment via epigenetics 
may produce profound effects that impact drug and non-drug seek-
ing behaviors by changing gene expression. Many new insights 
have come from recent understanding, of how the environment 
through epigenetics modifies gene expression which alters brain 
function. By the insertion of methyl groups into histones on the 
chromatin structure of the gene, the chromatin can (wrap tightly) 
and turn off; or by the insertion of acetyl groups into histones the 
gene chromatin structure can (unfurl) and be turned on. In fact, 
chronic cocaine in mice induces a noticeable shift of the balance 
from genetics to epigenetics whereby there is an enhanced sensitiv-
ity to drugs and addiction risk. A single injection of cocaine can 
cause changes in gene expression in the NAc. It has been 
established that in the absence of drug addiction (possibly even in 
non-substance addiction, for example,  gambling) methyl type 

marks predominate keeping certain genes quite. However, cocaine 
causes acetyl groups to predominate and chromatin to loosen and 
genes involved in the pleasurable response to drugs or behaviors to 
come alive. The importance of dopaminergic homeostasis including 
the usual expression of the DRD2 gene has been recently 
underscored by an analysis of epigenetic effects linked to this gene.    
 Hillemacher et al. evaluated epigenetic DNA-methylation 
patterns in the DRD2-gene in lifetime history of pathological gam-
blers and provided evidenced for significantly higher methylation 
levels in non-abstinent (12 to 30 months) and participants without 
treatment-seeking behavior compared to abstinent gamblers [246]. 
Consequently, the authors determined that indeed there is a patho-
physiological relevance of altered DRD2-expression caused by 
changes in DNA methylation in pathologic gambling. Moreover, 
Groleau et al. found that women with bulimic-spectrum disorder 
compared to women without an eating disorder showed significant 
increases in DRD2 methylation levels particularly in those women 
who were sexually abused during childhood [247].    
 These genetic and epigenetic effects may carry over to future 
generations and could explain why better compliance to amino-acid 
therapy as protective  mechanism especially in carriers of the D2 
receptor-deficient DRD2 A1 allele [241, 248]. We now must ask if 
“dopamine agonist therapy” such as with KB220 variants can 
reduce methylation and increase acetyl groups to enhance DRD2 
expression even in DRD2 A1 allele carriers leading to increased 
DA function and reduction of drug and non-drug seeking behav-
iors? 

6. CONCLUSION 
 Willuhn et al. found that as dopaminergic function decreases, 
cocaine consumption and other addictive behaviors increase [249]. 
Long-term cocaine abuse is linked to D2 and D3 receptor decrease 
and lowered stimulation of the occipital cortex and cerebellum. In 
particular, dopamine agonist therapy, a therapy that conserves and 
repairs dopamine functioning, may potentially serve as a successful 
approach to relapse prevention in psychoactive drug and behavioral 
addictions.  
 After a mixed review of Medication Assisted Treatment 
(MAT), we have pinpointed the failures of glutaminergic medica-
tions, specifically in the chronic treatment of RDS behaviors. Both 
neurogenetics and epigenetics are incredibly important in addiction 
treatment response and clinical outcomes. According to scientific 
research, we suggest the use of “dopamine agonist therapy” for 
long-term and concur with the careful use of short-term “dopamine-
antagonistic therapy.” A plethora of the literature provides robust 
examples of genetic and epigenetic links to relapse and the 
possibility of relapse prevention. Our proposal is that due to higher 
rates of hospitalization and perhaps mortality of DRD2 A1 allele 
carriers (30-40 less D2 receptors) [250] enhanced relapse preven-
tion tactics such as the neuronutrient –amino-acid therapeutic 
(KB220 variants), should be considered. The reasoning behind this 
proposal is linked to the understanding of neuro–mechanisms con-
necting “dopamine homeostasis” to addiction recovery from drug 
and non–drug addictive behaviors. Luckily, the addicted brain, 
specifically DRD2 A1 carriers, favors Neuronutrient –Amino-Acid 
therapy due to an increased sensitivity to dopaminergic activity 
promotion [208]. Carriers of the DRD2 A1 allele display aug-
mented striatal-activity of L-amino acid decarboxylase which might 
favor increased dopamine synthesis when amino acid precursors are 
available. Ultimately, future research should be focused on the role 
of “dopamine agonist therapy” using KB220 variants. Knowing that 
heightened dopamine function can cause a decline in drug and non-
drug seeking behaviors, can methylation be lowered, and acetyl 
groups increased in order to develop better DRD2 expression, 
particularly in DRD2 A1 allele carriers? This must await intensive 
investigation.  
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